
PERFORMANCE EVALUATION FOR
XSLT PROCESSING

by

Torsten Bittner

University of Rostock

2004

Approved by: Dr. Meike Klettke

Date: 07/15/2004

 ii

University of Rostock

Abstract

PERFORMANCE EVALUATION FOR
XSLT PROCESSING

by Torsten Bittner

The increasing popularity of XSLT for transforming XML data brings up the question of
the performance of the transformations. This paper gives an introduction into the topic of
XSLT performance regarding to the relationship of the three components XSLT
processor, stylesheet and input data and their major influence on the transformation time.
These three factors are described and their impact is analyzed. Different approaches to
measure XSLT performance and the testing environment are discussed.

Various XSLT processors are introduced and their functionalities are compared to each
other. Their performance is measured using various test simulation models.

The performance of different XSLT stylesheets is evaluated. The data mapping tool
prototype Clio is used to automatically generate these XSLT stylesheets.

Finally some ideas that help XSLT developers to improve the speed of XSL
transformations are discussed.

 i

TABLE OF CONTENTS

1 Introduction...5

2 XSLT processors ..6

2.1 Java Processors ...7
2.1.1 jd.xslt..7
2.1.2 Oracle XDK...7
2.1.3 Saxon ...8
2.1.4 Xalan-J...9
2.1.5 XT..9

2.2 C/C++ Processors ..10
2.2.1 Altova XSLT Engine... 10
2.2.2 FastXML.. 10
2.2.3 Libxslt... 10
2.2.4 Microsoft Msxml.. 11
2.2.5 Sablotron.. 11
2.2.6 Xalan-C++.. 11

2.3 Other Processors..12
2.3.1 4Suite 4XSLT.. 12
2.3.2 XML::XSLT .. 12

3 XSLT Performance Test Environment..13

3.1 Generation of XML data ..13
3.1.1 General approaches ... 14
3.1.2 Synthetically generation from DTD – IBM XML Generator 15
3.1.3 Synthetically generation from XML schema - ToXgene.............. 16

3.2 Parameters that affect XSLT performance ...17
3.2.1 XSLT processor ... 18
3.2.2 XSLT stylesheet.. 18
3.2.3 XML input data .. 18

3.3 Parameters that can be used to measure performance..........................19
3.3.1 Data throughput... 19
3.3.2 Processing time... 19

3.4 Software to measure XSLT performance..19

 ii

3.4.1 DataPower XSLTMark... 20
3.4.2 Sarvega XSLT Benchmark ... 20
3.4.3 CatchXSL – The XSLT profiler.. 21

3.5 Used Hardware to measure XSLT performance22

4 XSLT processor performance comparison ...23

4.1 DataPower XSLTMark results ..23

4.2 Sarvega XSLT Benchmark results...24

5 Performance of Clio-generated XSLT ...27

5.1 Motivation of the Clio project ...27

5.2 Functionalities of Clio ...27

5.3 Clio Test cases ..29
5.3.1 Transforming attributes to elements .. 30
5.3.2 Transforming elements to attributes .. 32
5.3.3 Flat hierarchy to flat hierarchy... 33
5.3.4 Flat hierarchy to nested hierarchy... 34
5.3.5 Nested hierarchy to flat hierarchy... 38
5.3.6 Nested hierarchy to nested hierarchy... 40
5.3.7 Summary for Clio transformations... 41

6 Improving XSLT performance..42

6.1 Existing approaches...42

6.2 Modifications of input/output documents ...43
6.2.1 Splitting up big input files... 43
6.2.2 Using attributes instead of elements... 45
6.2.3 Keep tag names short.. 45
6.2.4 Keep the output documents small.. 46

6.3 Modifications of XSLT stylesheets...46
6.3.1 Prefer “pattern matching” and “selecting” over “filtering”......... 46
6.3.2 Use the Muenchian method for grouping....................................... 48
6.3.3 Usage of keys .. 51
6.3.4 Prefer the direct addressing of nodes over indirectly addressing them 52
6.3.5 Effects of comments ... 54
6.3.6 Split up complex transformations into several stages 54
6.3.7 Usage of the JAXP API.. 55

 iii

6.4 Modifications of XSLT processor ..55

6.5 DataPower Hardware XSLT processor...55

7 Conclusion and Outlook...56

8 Bibliography...57

9 Appendix –Test Results ..59

9.1 Clio Results..59
9.1.1 Transformation attributes to elements... 59
9.1.2 Transformation elements to attributes... 60
9.1.3 Flat hierarchy to flat hierarchy... 61
9.1.4 Flat hierarchy to nested hierarchy... 62
9.1.5 Nested hierarchy to flat hierarchy... 64
9.1.6 Nested hierarchy to nested hierarchy... 65

9.2 Performance Improvement Results..66
9.2.1 Splitting up big input files... 66
9.2.2 Using attributes instead of elements... 67
9.2.3 Keep names for elements short .. 67
9.2.4 Prefer “pattern matching” and “selecting” over “filtering”......... 68
9.2.5 Use the Muenchian method for grouping....................................... 69
9.2.6 Usage of keys .. 70
9.2.7 Prefer direct addressing nodes over indirect addressing............... 70
9.2.8 Effects of comments ... 71

 iv

LIST OF FIGURES

Figure 1-1 Architecture of an XSL Transformation..5
Figure 3-1 Generating an XML file using WSAD .. 14
Figure 3-2 IBM XML Generator GUI.. 15
Figure 3-3 Running an XSL transformation with the CatchXSL GUI................. 21
Figure 3-4 Result view of an XSL transformation with the CatchXSL GUI....... 22
Figure 4-1 XSLTMark 2.0 Results.. 23
Figure 4-2 Sarvega XSLT Benchmark Results... 24
Figure 4-3 Sarvega XSLT Benchmark Results Set I ... 25
Figure 4-4 Sarvega XSLT Benchmark Results Set II.. 26
Figure 4-5 Sarvega XSLT Benchmark Overall Score ... 26
Figure 5-1 Generation of XSLT with Clio (schematic view) 28
Figure 5-2 Clio mapping attributes to elements .. 30
Figure 5-3 Results a2e1.xsl... 31
Figure 5-4 Results a2e2.xsl... 31
Figure 5-5 Results a2emu1.xsl... 31
Figure 5-6 Results a2emu2.xsl... 31
Figure 5-7 Clio mapping elements to attributes .. 32
Figure 5-8 Results e2a1.xsl... 32
Figure 5-9 Results e2a2.xsl... 32
Figure 5-10 Results e2amu1.xsl... 33
Figure 5-11 Results e2amu2.xsl... 33
Figure 5-12 Clio mapping flat hierarchy to flat hierarchy.. 33
Figure 5-13 Results f2f1.xsl ... 34
Figure 5-14 Results f2f2.xsl ... 34
Figure 5-15 Results f2fmu1.xsl ... 34
Figure 5-16 Results f2fmu2.xsl ... 34
Figure 5-17 Clio mapping flat hierarchy to nested hierarchy (2 levels)................. 35
Figure 5-18 Results f2n2l1.xsl ... 35
Figure 5-19 Results f2n2l2.xsl ... 35
Figure 5-20 Results f2n2lmu1.xsl ... 36
Figure 5-21 Results f2n2lmu2.xsl ... 36
Figure 5-22 Clio mapping flat hierarchy to nested hierarchy (3 levels)................. 36
Figure 5-23 Results f2n3l1.xsl ... 37
Figure 5-24 Results f2n3l2.xsl ... 37
Figure 5-25 Results f2n3lmu1.xsl ... 37
Figure 5-26 Results f2n3lmu2.xsl ... 37
Figure 5-27 Clio mapping flat hierarchy to nested hierarchy (4 levels)................. 38
Figure 5-28 Clio mapping nested hierarchy to flat hierarchy (3 levels)................. 39
Figure 5-29 Results n2f1.xsl .. 39
Figure 5-30 Results n2f2.xsl .. 39
Figure 5-31 Results n2fmu1.xsl .. 39
Figure 5-32 Results n2fmu2.xsl .. 39

 v

Figure 5-33 Clio mapping nested hierarchy to nested hierarchy (3 levels) 40
Figure 5-34 Results n2n1.xsl.. 40
Figure 5-35 Results n2n2.xsl.. 40
Figure 5-36 Results n2nmu1.xsl.. 41
Figure 5-37 Results n2nmu2.xsl.. 41
Figure 6-1 Results e2a1.xsl – Complete file.. 44
Figure 6-2 Results e2a1.xsl - Sum of single files .. 44
Figure 6-3 Results e2a2.xsl - Complete file... 44
Figure 6-4 Results e2a2.xsl - Sum of single files .. 44
Figure 6-5 Results elementcontent.xsl... 45
Figure 6-6 Results attributecontent.xsl .. 45
Figure 6-7 Results grouping_muench.xsl.. 46
Figure 6-8 Results grouping_muench_long.xsl ... 46
Figure 6-9 Results country_filtering.xsl... 48
Figure 6-10 Results country_matching.xsl.. 48
Figure 6-11 Results country_selecting.xsl ... 48
Figure 6-12 Results grouping_normal.xsl ... 50
Figure 6-13 Results grouping_muench.xsl.. 50
Figure 6-14 Results grouping_muench.xsl.. 52
Figure 6-15 Results grouping_muench2.xsl ... 52
Figure 6-16 Results grouping_muench3.xsl ... 53
Figure 6-17 Results grouping_muench4.xsl ... 53
Figure 6-18 Results elementcontent_comment.xsl ... 54
Figure 6-19 Results elementcontent.xsl... 54
Figure 6-20 DataPower Benchmark Results of XA35 [xa35] 56

1. Introduction

 5

1 Introduction

Since 1999 the popularity of XSLT increased continuously as it is becoming a common
means for XML data transformations. XSLT is a powerful and flexible language that often
offers developers more than one way to solve a problem. Since XSLT is a new language the
performance has not been fully analyzed and explored to provide the best perspectives into
the usage of the technology.

As a declarative programming language, XSLT gives developers the flexibility to write code
to describe what is wanted but does not answer which is the best way to perform the same
transformation in relevance to speed, time, and process consumption.

For practical XSLT programming the execution time of an XSL transformation is often a
crucial factor. Thus concrete problems are a topic of interest in XSLT newsgroups [mulb].
There XSLT developers exchange ideas of how performance can be improved.

The available reference on this topic is poorly documented. Although XSLT performance is
covered in some of the available XSLT literature, these parts are usually pretty short and only
give limited hints on how to improve XSLT performance. The “Guide to XSLT
Performance” is missing. Points of interests are: Is there a “best” way to approach XSLT
programming? How big is the performance difference of different XSLT stylesheets that
produce the same result? What is “good” XSLT? How can performance be measured?
How can tests be executed? How can results be compared? Are there any general hints that
can be applied for most XSLT problems?

This paper covers some of these points and gives an introduction into the area of XSLT
performance. It is for people who already know XSLT. Good sources for general
information about XSLT programming are Beginning XSLT [Ten00] and XSLT & XPATH –
A Guide to XML Transformations [GR02].

Figure 1-1 depicts the architecture of an XSL transformation. It shows that there are three
components that impact the transformation and thus the transformation performance:

1. XML input data

2. XSLT stylesheet

3. XSLT processor

Figure 1-1 Architecture of an XSL Transformation

XML

XML

(X)HTML

WML

Text

XSLT
Processor

XSLT
Stylesheet

2.1 Java Processors

 6

XML input data is transformed by the XSLT processor. The XSLT stylesheet contains rules
that describe this transformation. The output data can have different formats e.g. XML,
(X)HTML, WML and Text. The question how the three components affect the performance
of the XSL transformation is discussed in this paper.

Chapter 2 gives an overview of currently available XSLT processors and compares their
functionalities.

An environment to measure XSLT performance is characterized in Chapter 3. Different
approaches to generate XML data are introduced. The software that is used for measuring
XSLT performance is described as well as the hardware platform. In addition the parameters
that affect XSLT performance and that can be tested and varied are compared to each other.

The transformation performance of some currently available XSLT processors is compared
in Chapter 4. Two different benchmarks are used to find out which XSLT engine provides
the best performance.

In order to ease the creation of XSLT stylesheets IBM currently develops the data mapping
tool Clio. Clio is used to generate XSLT stylesheets for common XSL transformation
operations. Chapter 5 introduces Clio and the performance of Clio-generated XSLT scripts
is evaluated.

Using the XSLT performance testing environment different ways to speed up XSL
transformations are presented in Chapter 6. Several approaches to execute a transformation
are compared to each other. Some hints about general advantages of each approach are
provided.

The paper finishes with a conclusion and an outlook on further investigation of the area of
XSLT performance in Chapter 7.

2 XSLT processors

In 1999 the W3C released the XSLT 1.0 recommendation. Since then several companies
started to develop XSLT processors. These companies like IBM, Microsoft, Oracle or
Altova tried to put their feet into the future market for XML processing tools. Other
products of these companies already supported XML data. XSLT extends the possibilities to
take use of this data. Thus the integration of XSLT engines into data management tools
becomes a necessity. However, the stand-alone XSLT engines are entirely available for free
usage.

Apart from companies private people started to implement XSLT processors as well.
Michael Kay, author of “XSLT Programmers Reference” [Kay00], and James Clark as a
member of the W3C committee are the most popular examples. Michael Kay developed
Saxon and James Clark the XSLT processor XT. In addition there is another set of XSLT
processors developed by open source communities.

The following chapter provides an overview of the most popular XSLT processors. They are
described and compared by their functionalities and characteristics. The main criterion is the
implementation language. The supported platforms are usually implied by this language.

Another characteristic is the support of EXSLT functions. During the usage of XSLT
processors it turned out that the capabilities of XSLT 1.0 functions were limited – especially

2. XSLT processors

 7

when handling dates, time, mathematic functions, string functions and regular expressions.
Those functions were often needed by XSLT programmers. Hence the developers of XSLT
processors started to implement a proprietary support of enhanced functions. However this
limited the XSLT code to be executed with only one processor and the great flexibility of
XSLT was lost. Thus the implementers of XSLT processors founded the EXSLT
community [exsl] to provide a standardized set of functions that is used by all processors to
keep the XSLT code portable. The initiative’s goal is also to include EXSLT functions in
future XSLT standards.

The up-to-dateness of XSLT processors is very important, too. In the past a couple of
projects were not continued while at the same time new XSLT processors came into
existence. Some of them are constantly improved and enhanced. Until today the integration
of XSLT 2.0 functionalities is not completed. So the major focus of most XSLT
implementers is on the features rather than the performance of the processors.

2.1 Java Processors

The idea of XML is to deliver a platform independent format to exchange data. That
perfectly matches the idea of Java as a platform independent programming language. Hence
a couple of XSLT processors are implemented in Java.

The Java API for XML Processing (JAXP) provides a standard interface for parsing and
processing XML data. The XSLT processors implement these functions according to the
JAXP interface which is available in different versions. Developers who build their
application on top of the JAXP interface can easily exchange the XSLT processing engine.

The following section introduces the most popular Java XSLT processors in alphabetical
order.

2.1.1 jd.xslt

The Java processor jd.xslt is an open source XSLT engine. It has been developed mostly by
Johannes Döbler. The processor implements the XSLT 1.1 Working Draft. Currently the
work on the processor is not continued.

Developer Johannes Döbler Info [jdxs]

Platform Java Code Java

License Mozilla Public Licence XSLT 1.1

Version 1.5.5 JAXP n/a

Version date May 2003 EXSLT yes

2.1.2 Oracle XDK

The Oracle XSLT processor is part of the Oracle XML Developer’s Kit (XDK). This kit
contains different tools for XML processing like XML Parsers (SAX and DOM), XML

2.1 Java Processors

 8

schema processors, XML class generator, XML SQL utility, XSQL servlet, XML pipeline
processor and the TransX Utility. Oracle offers full support for the package that is closely
interacting with the Oracle database management system. Due to these close interrelations
Oracle XSLT is especially useful for XML developers who are building their application on
top of Oracle products.

The XDK also includes a C++ implementation of the XSLT processor. However, this one
is only compliant to the XSLT 1.0 specifications.

Developer Oracle Info [oxdk]

Platform Windows / Unix Code Java / C++

License Oracle XSLT 2.0 / 1.0

Version 10.1.0.2.0 JAXP 1.2

Version date March 2004 EXSLT n/a

2.1.3 Saxon

Saxon is developed by Michael Kay, who is an expert in the XSLT community, member of
the W3C and author of XSLT literature [Kay00]. The name Saxon results from the original
architecture of the processor. It is built ‘on’ top of the ‘SAX’ parser.

The XSLT processor is available in three different versions. Saxon 6.5.3 is a stable release
from August 2003 that fully implements XSLT 1.0. Additionally, it offers some XSLT 1.1
features and a large set of the EXSLT extension library. Some of the extended functions
started as proprietary Saxon features and were adopted by other XSLT processors later on.

Instant Saxon 6.5.3 provides the same functionality but comes without the source code and
sample applications. Installation and usage are easier and it is limited to Windows systems
because it is using the Microsoft Java Virtual Machine (JVM). It can be used for simple
applications. However for professional usage the full Saxon 6.5.3 processor is recommended
because it performs better due to the usage of the Sun JVM.

The latest development work is done on the 7.x -series of Saxon. Additional features of the
XSLT 2.0 standard are implemented step by step. Saxon 7.9.1 is not only an XSLT processor
but also an XPath 2.0 and XQuery 1.0 processor. Further development and the complete
implementation of the XSLT 2.0 standard are planned. However, in March 2004 Michael
Kay founded the company Saxonica Limited which will release future versions with more
functionality as a commercial product.

Developer Michael Kay Info [saxn]

Platform Java Code Java

License Mozilla Public License 1.0 XSLT 1.0 + 1.1 / 1.0 + 2.0

Version 6.5.3 / 7.9.1 JAXP 1.1 / 1.2

2. XSLT processors

 9

Version date August 2003 / November 2003 EXSLT yes

2.1.4 Xalan-J

The Apache project Xalan-J came into existence as a donation of the former LotusXSL
engine developed by IBM [lxsl]. Later Sun’s XSLT Compiler became part of the open source
project as well. The name Xalan is derived from an African music instrument [xalm].

The XSLT processor Xalan is closely interrelated to the XML parser Xerces. Both are well
maintained and constantly improved. One peculiarity about Xalan is the availability of
Document Table Models (DTM) in addition to the common Document Object Model
(DOM). The DOM is memory consumptive. The DTM approach tries to save memory and
promises better performance.

The XSLT Compiler enables the user to translate XSL stylesheets into so-called translets.
The translet contains Java byte code and can be applied to XML documents for a
transformation. The idea is also to improve the transformation performance. However, this
aspect is not part of the transformations tested in this paper.

Developer Apache Software Foundation Info [xalj]

Platform Java Code Java

License Apache License 2.0 XSLT 1.0

Version 2.6.0 JAXP 1.2

Version date February 2004 EXSLT yes

2.1.5 XT

James Clark, member of the W3C committee, developed XT with the main goal to create a
fast XSLT processor. The project is now maintained by Bill Lindsey. Due to the
concentration onto high performance not every function of the XSLT 1.0 standard is
implemented. However, XT offers some extension functions and can be the right choice if
performance is more important than full conformance to the standard.

Developer James Clark / Bill Lindsey Info [xt]

Platform Java Code Java

License Open Source XSLT partly 1.0

Version 20020426a JAXP n/a

Version date April 2002 EXSLT partly

2.2 C/C++ Processors

 10

2.2 C/C++ Processors

Java is known for platform independence but also for slower runtime performance than
C/C++ implementations. Thus there are a couple of C/C++ XSLT processors available.
They try to outperform their Java competitors.

2.2.1 Altova XSLT Engine

Altova has released the XSLT engine that is used in their products (e.g. XML Spy) as a stand-
alone version. It is available for free download [alto]. It completely implements the XSLT
1.0 standard and is written in C++. The package only includes one executable file and the
documentation. The usage is very easy on Windows systems.

Developer Altova GmbH Info [alto]

Platform Windows 98/ME/2000/XP/2003 Code C++

License Altova XSLT Engine developer license XSLT 1.0

Version XSLT Engine 2004 Release 3 JAXP n/a

Version date October 2003 EXSLT n/a

2.2.2 FastXML

FastXML is developed by Helena Kupkova as a result of her master’s thesis. With
optimizations and efficient memory usage the XSLT processor has a good performance.
However, it is not fully compliant to the XSLT 1.0 standard and is currently not further
developed.

Developer Helena Kupkova Info [fast]

Platform Windows Code C++ / Assembler

License n/a XSLT most of 1.0

Version n/a JAXP n/a

Version date April 2001 EXSLT n/a

2.2.3 Libxslt

Libxslt is an XSLT library that is developed for the Gnome project. It is open source,
written in C and includes the Libexslt library that implements some of the EXSLT extension
functions.

Developer Gnome Project Info [libx]

2. XSLT processors

 11

Platform Windows /Linux / Solaris / MacOS Code C

License MIT License XSLT 1.0

Version 1.1.4 JAXP n/a

Version date March 2004 EXSLT yes

2.2.4 Microsoft Msxml

Microsoft Core Services 4.0 is a package of XML tools. The Dynamic Link Library (DLL)
that includes the processor can be used to develop XML applications. It can also be invoked
from the command line using an additional executable file.

Developer Microsoft Info [msxm]

Platform Windows Code C++

License Microsoft XSLT 1.0

Version 4.0 SP2 JAXP n/a

Version date April 2003 EXSLT n/a

2.2.5 Sablotron

Sablotron is an open source project of the Ginger Alliance. It is implemented in C++ and
depends on the XML parser Expat which is developed by James Clark. Developers can use
the processor in C++ applications and in other languages e.g. Perl, PHP, Object Pascal and
Ada. This is possible because of wrappers that were developed for these languages.

Developer Ginger Alliance Info [sabl]

Platform Linux / Windows 98/ME/2000/XP / Solaris /
HP-UX / Irix / FreeBSD / OpenBSD

Code C++

License Mozilla Public License 1.1 XSLT 1.0

Version 1.0.1-2 JAXP n/a

Version date November 2003 EXSLT n/a

2.2.6 Xalan-C++

Xalan-C++ is an alternative for the Xalan-J engine that is also offered from the Apache
Software Foundation. One goal of the C++ version is to improve performance and memory
usage. The support of EXSLT extensions is currently in Beta stadium.

2.3 Other Processors

 12

Developer Apache Software Foundation Info [xalc]

Platform Windows / Linux (RedHat, SuSE) / AIX /
HP-UX / Solaris

Code C++

License Apache License 2.0 XSLT 1.0

Version 1.7 JAXP n/a

Version date January 2004 EXSLT yes (beta)

2.3 Other Processors

A major field for XSLT is the transformation of XML into HTML on web servers. Perl and
Python are programming languages that are often used on web servers. Hence the XSLT
processor Sablotron provides wrappers for these languages. In addition there are projects
which implement XSLT processors directly in these languages.

2.3.1 4Suite 4XSLT

4Suite is an XML development toolkit that implements technologies like XSLT, DOM, RDF,
XPath and XPointer entirely in Python.

Developer Fourthought Info [4xsl]

Platform Windows 98/ME/2000/XP / Linux / Solaris /
MacOS /FreeBSD

Code Python

License 4Suite License 1.1 XSLT 1.0

Version 1.0a3 JAXP n/a

Version date July 2003 EXSLT yes

2.3.2 XML::XSLT

Many web servers, especially those of web space providers for private people, do not support
Java servlet technologies. Perl is supported much more often. Hence the Perl
implementation of XML::XSLT targets people who want to execute XSL transformations on
their private homepage without Java support.

Developer Geert Josten, Egon Willighagen Info [xmlt]

Platform Windows 98/ME/2000/XP / Linux / Solaris Code Perl

Licence Open Source XSLT most of 1.0

3. XSLT Performance Test Environment

 13

Version 1.25 JAXP n/a

Version date February 2004 EXSLT n/a

3 XSLT Performance Test Environment

In order to run performance tests for XSL transformations several components are required:

1. Input data

2. XSLT stylesheet

3. XSLT processor

4. Parameters that affect performance and are modified during the tests

5. Parameters that are measured during the tests

6. Software to measure performance (benchmarks)

7. Hardware platform that is fixed for all tests

The following chapter introduces the test environment that is used for the XSLT
performance tests in this paper. Most of the provided information is general and is helpful
for any type of XSLT performance tests.

All components are described in the following sections. However the creation of XSLT
stylesheets (Chapter 5 and 6) and the introduction of XSLT processors (Chapter 2) are
discussed in separate sections in more detail.

3.1 Generation of XML data

Input data is required for every XSL transformation. The data has to be well-formed XML.
The presence of a matching XML schema for this data is helpful, because applications often
use the schema to validate the processed XML data. Often the schema is required for the
work with XML data. An example is the data mapping tool Clio that imports XML schema
files (Chapter 5) as the base of every document mapping.

The need for XML schemas and valid XML data brings up the question: “Why not just using
real data and see how good the transformation performs?” In many cases it is definitely the
best idea to work with real data because this data exactly represents the scenario that the
transformation is going to be used for. However, there are several problems with using real
data. Firstly, there might not be enough real data available. Especially when creating new
applications it is likely that there is hardly data existing to work with because it is only
accumulated once the application is running. There are sources in the internet that offer
XML data collections for download [shap] [trad]. However, this data is limited to certain
schemas. So it does not match all possible requirements. Another downside of real data is
that there is no control of the data structure and file size.

The best way to get input data for testing purposes is to create the data according to the
needs of the application. There are different ways to create XML data. The following
sections give an overview about the most common approaches.

3.1 Generation of XML data

 14

3.1.1 General approaches

For simple purposes creating XML files can be done quite easily by writing an XML file
according to a certain XML schema. This can be done either manually from the scratch or
assisted by a software tool. Several programs offer this functionality e.g. Altova XML Spy
and IBM WebSphere Studio Application Developer. Figure 3-1 shows how WSAD
generates an XML file that is valid to given XML schema. The major problem with this way
of creating XML files is the need for manually padding the files with data. The assistance of
the tools is helpful but the creation of large XML files is still very cumbersome.

Figure 3-1 Generating an XML file using WSAD

A more powerful means to create XML files is to write a program or a script e.g. using Java
or Perl. Java users benefit from the presence of XML APIs like DOM that ease the work
with XML. Perl is particularly useful because of its powerful support of string functions and
regular expressions. With the flexibility of loops and randomized functions it is much easier
to create documents with different elements that have random content. The number of
elements and the document size can be varied easily. Further down in this chapter it turns
out that these are important factors which affect the performance of the transformation
process. So it is important to have control of these factors when creating input data.

The downside of an application or a script is their inflexibility of being adapted to different
XML schemas. Modifications of XML schemas result in continuous adjustments of the
program code.

3. XSLT Performance Test Environment

 15

A much more intuitive way is to take a DTD or an XML schema and create valid sample data
out of it. However, the realization of this functionality is not trivial. In different projects
people tried to provide a solution for this problem.

3.1.2 Synthetically generation from DTD – IBM XML Generator

The XML Generator was developed by IBM to synthetically generate XML data based on a
DTD. It is written in Java and available for free on the IBM Alphaworks website.

Given a well-formed DTD and a valid XML tree it creates random instances of valid XML
data. Figure 3-2 shows the imported DTD, certain probabilities that can be defined by the
user for the appearance of elements or attributes and the resulting XML document that is
generated based on these parameters.

Figure 3-2 IBM XML Generator GUI

However, the XML Generator provides only limited control of the data generation process.
For example, it is impossible to specify the exact number of levels for the generated XML
documents; only the maximum level can be defined. Apart from that there is a limitation to
uniform frequency distributions with no opportunity for generating skewed data. In addition
the XML Generator can only process DTD files. It is not equipped to handle XML schemas
that have more power to describe the structure of XML files and define different data types.

3.1 Generation of XML data

 16

3.1.3 Synthetically generation from XML schema - ToXgene

The limitations of the XML Generator are eliminated in ToXgene. ToXgene is a Java based
tool that is developed mainly by Denilson Barbosa at the University of Toronto [toxg]. It is
part of the Toronto XML Server (ToX) project. The Toronto XML Server is a
heterogeneous repository for XML data and metadata, which supports real and virtual XML
documents [toxx].

ToXgene itself is a template-based generator for large, consistent collections of synthetic
XML documents. It is declarative, powerful, very flexible and easy to use. It defines its own
language to describe templates. This ToXgene Template Specification Language (TSL) is a
subset of the XML schema notation that is enhanced with content-describing annotations.
The language is used to describe the structure of an XML file as well as its content.

The consequence of the similarity of the TSL-file to an XML schema is that the user can
basically take the XML schema and add the description of the content to get a TSL-file.

The following example illustrates this procedure. The XML schema states.xsd is the base:
<?xml version=“1.0“ encoding=“UTF-8“?>
<xsd:schema xmlns:xsd=“http://www.w3.org/2001/XMLSchema“>
<xsd:element name=”source”>
<xsd:complexType>

 <xsd:sequence>
 <xsd:element name=”state” minOccurs=”0” maxOccurs=”unbounded”>
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name=”state_name” type=”xsd:integer”/>
 <xsd:element name=”country_name” type=”xsd:integer”/>
 <xsd:element name=”continent_name” type=”xsd:integer”/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:schema>

Assuming that the names for states, countries and continents are integer values a manually
written TSL-file states.tsl looks like this:
<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE tox-template

SYSTEM “http://www.cs.toronto.edu/tox/toxgene/ToXgene2.dtd”>
<tox-template>
<tox-document copies=”1” name=”states” pad=”no” starting-number=”1”>
<element name=”source”>
<complexType>
<element name=”state” minOccurs=”1000” maxOccurs=”1000”>
<complexType>
<element name=”state_name”>
<simpleType>
<restriction base=”integer”>
<tox-number minInclusive=”0” maxInclusive=”9”/>
</restriction>
</simpleType>
</element>

3. XSLT Performance Test Environment

 17

<element name=”country_name”>
<simpleType>
<restriction base=”integer”>
<tox-number minInclusive=”0” maxInclusive=”9”/>
</restriction>
</simpleType>
</element>
<element name=”continent_name”>
<simpleType>
<restriction base=”integer”>
<tox-number minInclusive=”0” maxInclusive=”9”/>
</restriction>
</simpleType>
</element>
</complexType>
</element>
</complexType>
</element>
</tox-document>
</tox-template>

The ToXgene engine generates one file states.xml based on the descriptions in states.tsl. This
XML file contains exactly 1000 <state> elements. Each <state> element has a
<continent_name>, a <country_name> and a <state_name> element. These
three elements have random integer values between 0 and 9. The file is valid to the schema
states.xsd.

The example shows the similarity of the XML schema file and the TSL-file. The basic
concept of ToXgene becomes obvious. However, ToXgene offers much more
functionalities. It supports the generation of complex XML content like CDATA, element,
attributes and mixed. CDATA values can be generated according to a type declaration.
Various string, non-gibberish text, numeric and date types are supported. Document
collections that share the same elements can be generated to enable consistent ID and
IDREF connections. Real application data can be imported to be used as the base for
randomized element or attribute content [toxg].

Using ToXgene it is possible to synthetically generate XML data, which can easily be adapted
to unique requirements by varying the input parameters of the data generator template file.
The structure of the data is well-understood and it is easy to generate complete collections of
files with different sizes. All the user has to make sure is that the complexity of the synthetic
data reflects the complexity of the real-life scenario. Due to these reasons ToXgene is used
to generate the input data for the XSL transformations in this paper.

3.2 Parameters that affect XSLT performance

There are different parameters that can be varied when measuring XSLT performance. The
following section introduces several aspects that are important for choosing the parameter
for performance evaluation that matches the needs for a testing scenario best.

3.2 Parameters that affect XSLT performance

 18

3.2.1 XSLT processor

The XSLT processor has a major impact on the performance of the transformation.
Supported by an XML parser it applies the template rules of the stylesheet to the data and
creates the output data.

XSLT processors use different XML parsers. Some processors use external parsers while
others implement their own. For example Xalan-J uses Xerces and XT uses Expat. Msxml
does not use an external parser. However, the speed of XML parsers is neglected in this
paper. The open source project XML Benchmark [xmlb] provides details about XML parser
performance. The combined speed of XML parsing and XSLT processing is covered in the
benchmark comparison of XSLT processors in Chapter 4.

3.2.2 XSLT stylesheet

The complexity of the XSLT stylesheet strongly affects the transformation time. The usage
of different XSLT code that creates the same output often results in big differences of the
processing time. Chapter 5 and 6 illustrate the effect of the XSLT stylesheet in more detail.

3.2.3 XML input data

For many data processing benchmarks the input data is a crucial factor. Mostly it is the file
size that determines the processing speed. So for XSL transformations one could vary the
file size in order measure performance. However, there is one big downside to this
approach.

XML files can be document-centered or data-centered. Document-centered files contain a
lot of content, e.g. there are complete books written in XML. These documents can have a
very simple structure consisting of chapters and paragraphs. The text – the content of the
document – determines the size of the XML file.

The size of data-centered XML files, however, is less dominated by the element content.
The elements usually contain much smaller data values. Hence the impact of markups
increases – the longer the markup tags for the document, the bigger the file. The test in
section 6.2.3 shows that the transformation of two files with the same structure but different
length of markup tags are processed in almost the same time. Thus it is better to take the
number of XML elements as the measure for the input data.

So the number of elements in the XML document has a major impact onto the processing
time. However, if just a very limited number of elements are relevant for the XSL
transformation the overall number of elements in the document is not as important. The
number of transformed elements matters more.

The tests in this paper are all based on the number of transformed elements in the source
document.

3. XSLT Performance Test Environment

 19

3.3 Parameters that can be used to measure performance

When determining the performance of XSL transformations there are two major measures
that can be used – the data throughput and the processing time.

3.3.1 Data throughput

The data throughput is used by many benchmarks as a measure for performance. Because of
the file size issues mentioned in section 3.2.3 this approach has some disadvantages when
working with XML data. Imagine that two files with the same structure but different file
sizes are processed. The one with the bigger file size (due to longer markup tags) would
always cause a higher data throughput value disregarding the fact that both transformations
were executed in exactly the same time. The XSLT stylesheets for this example would be
almost identical except from tag names. Hence two identical stylesheets could produce very
different results when measuring the data throughput. Obviously the data throughput is not
a good measure when comparing the impact of the XSLT stylesheet on the transformation
time.

Nevertheless, data throughput can be a reasonable measure when comparing the
performance of different XSLT processors to each other. Since input data and stylesheets
are fixed the data throughput is an indicator of the XSLT processor speed. The Sarvega
XSLT Benchmark Study [sarp] uses data throughput as the measure to compare XSLT
processors.

3.3.2 Processing time

The processing time for an XSL transformation is a simple yet accurate measure. Most
XSLT programmers are interested in how long their transformation runs. For XML to
HTML transformations on web servers the transformation time implies how many users are
able to simultaneously browse a website without delays.

In this paper the processing time is used as the measure for all tests.

3.4 Software to measure XSLT performance

In order to measure the performance of an XSL transformation appropriate software is
required. The software has to provide the following basic functionality:

• measure the transformation time

The following functionalities are optional, but ease the test work:

• automated tests with different processors

• automated runs with different stylesheets

• structured presentation of results

• measuring of input file size

• measuring of data throughput

The following sections introduce three tools that provide most of these functionalities.

3.4 Software to measure XSLT performance

 20

3.4.1 DataPower XSLTMark

The XSLTMark is developed by DataPower Technology in cooperation with the XSLT
community. It is a free XSLT processor performance benchmarking application. The
software including the source code can be downloaded and executed to test the performance
of XSLT processors [xmar].

The XSLTMark is a testing suite of 40 XSL transformations that are applied to several XML
files. The XSL files contain a collection of common scenarios for data transformation. The
test cases have been designed to cover a variety of possible tasks and input conditions for
transformations. The XSLTMark measures the performance in four major categories:

• Pattern Matching

• XPath Selection

• XPath Library Functions

• XSLT Control

Examples are: XML to HTML transformations; sorting, string, number functions; search of
elements and key functions [xmar].

In order to execute the benchmark with an XSLT processor a driver for this processor is
required. These drivers are usually provided by the vendors of the XSLT processors who
want to participate in the tests. The benchmark package includes drivers for the most
common XSLT processors. However, since the last release of the XSLTMark these versions
are outdated. It is possible to adapt the drivers to newer versions which requires
programming effort.

3.4.2 Sarvega XSLT Benchmark

An alternative to the XSLTMark is the XSLT Benchmark. It is developed by Sarvega [sarv]
and its design is similar to the XSLTMark’s. The benchmark package includes the source
code and is available for free [sard].

The XSLT Benchmark includes 15 different XSL transformations. Just like the XSLTMark
test cases they are considered to be representative for a variety of possible applications. A
detailed description of the test cases and further details about the benchmark are provided in
the paper “The Sarvega XSLT Benchmark Study” [sarp].

The XSLT Benchmark can be used with different XSLT processors. Again a driver is
required for each processor. Drivers for the most common processors are included in the
package. For new drivers the XSLT Benchmark offers an extension mechanism that is easier
to manage than the XSLTMark’s.

Apart from extending the XSLT Benchmark with new XSLT processors it can also be
extended with self-defined transformations by adding new XML input files and XSLT
stylesheets. For each test the number of runs, the input XML file and the XSLT stylesheet
are defined in a property file. New test cases can be added by adapting this property file.

The output documents are created in separate folders for each processor to enable a
comparison whether the same results are created during the transformation. The time to
process, data throughput, input file size, output file size and file names are saved in an XML

3. XSLT Performance Test Environment

 21

file. This XML file can be transformed into HTML or Microsoft Excel files to visualize the
results.

Due to its good extensibility the Sarvega XSLT Benchmark is used for the tests in this paper.

3.4.3 CatchXSL – The XSLT profiler

When it comes to the in-depth analysis of an XSL transformation the XSLT code needs to
be broken down into its atomic parts. A transformation consists of several steps. By
separating the different steps from each other it is possible to measure the execution time of
every single step separately. The final result of this procedure is the complete transformation
time and the information which part of the XSLT stylesheet has the major impact on the
processing speed.

CatchXSL is a free tool that provides these functionalities. It is developed by eCube [ecub].
It profiles XSL transformations. Every single XSLT instruction is recorded and the
execution time is logged. There is no standard interface to monitor the transformation speed
of XSLT processors available yet. Xalan-J and Saxon offer a proprietary interface which is
used by CatchXSL. Hence CatchXSL is limited to execute tests with these two processors.

The front end of CatchXSL is a command line interface or a graphical user interface. Figure
3-3 shows the test configuration window. For each test project the processor, the XML
input file, the XSLT stylesheet and the number of test runs have to be specified. Optionally,
write events can be traced and the XSL output can be generated. If this option is not
enabled the result of the XSL transformation is not written to a file.

Figure 3-3 Running an XSL transformation with the CatchXSL GUI

At the end of the transformation process CatchXSL offers a detailed list of the times that the
single transformations were running (Figure 3-4). The user can investigate these results in
order to find the hotspots of the most time consumptive parts in the code.

3.5 Used Hardware to measure XSLT performance

 22

During the tests it turned out that it is very useful to increase the number of runs up to the
point where the measuring process takes up about three minutes. If the tests are repeated
less times the results show many variations. With a higher number of transformations the
results become more stable. XSLT caching also affects the results. Repeated runs are usually
faster than one single run [catx].

Figure 3-4 Result view of an XSL transformation with the CatchXSL GUI

CatchXSL can be used for a detailed analysis of XSL transformations. Due to its limitation
to two XSLT processors it is only used for supplementary tests and the results are not
reflected in this paper.

3.5 Used Hardware to measure XSLT performance

The performance of XSL transformation is very CPU-intensive. Complex transformations
with large XML files can last up to several hours. Thus the hardware for the test execution
has a major impact onto the transformation time.

For the tests in this paper the following machine is used:

Model IBM Thinkpad A31
CPU Pentium 4 mobile 1.8 GHz
Main Memory 768 MB
Harddisk IBM Deskstar 40 GB
Operating System Windows XP
Java SDK 1.4.2.

During the execution of the tests only the minimum of services and software is running to
minimize the impact of concurrent tasks.

4. XSLT processor performance comparison

 23

4 XSLT processor performance comparison

The XSLT processor has a major impact on the speed of an XSL transformation. The
introduction of available XSLT processors in Chapter 2 provides an overview of their
characteristics and specifications. Apart from those technical details their performance is
important. The following questions have to be answered:

1. Are there differences between the processors?

2. If so – how big are these differences?

3. Are the differences dependent on the type of transformation?

The following chapter presents results of the DataPower XSLTMark and the Sarvega XSLT
Benchmark.

4.1 DataPower XSLTMark results

The latest version of the XSLTMark was released in the year 2001. Since then most of the
XSLT processors have been constantly improved. The drivers for the XSLT processors that
are included in the benchmark package are bound to a certain version of the processor. In
order to use the XSLTMark with newer versions of the XSLT processors the drivers have to
be modified which includes programming effort for each processor. Hence the XSLTMark
was not run with the latest versions of available XSLT engines. The benchmark results in
Figure 4-1 are derived from the XSLTMark homepage [xmar].

The first part of the tests includes the parsing process of the input XML files. The second
part only measures transformation time. Even though the processor versions are not the
latest the results are still valuable. The test shows that there are big differences between the
processors.

Figure 4-1 XSLTMark 2.0 Results

4.2 Sarvega XSLT Benchmark results

 24

In the ‘Parse & Transform’ tests the fastest processor (XT) is almost ten times faster than the
slowest processor (Xalan C). For the ‘Transformation Only’ tests the differences are even
bigger. The fastest processor (Msxml) is about 80 times faster than the slowest (4Suite). In
general C/C++ implementations are considered to have better performance than their Java
pendants. Interestingly this is not the case in this test. The C implementation of Xalan is
slower than the Java version.

However, it is important to point out that the benchmark rating also includes failed tests.
Some processors do not produce any output with certain transformations because they do
not entirely implement the XSLT standard. Those zero-values are reflected in the
benchmark result and have a negative effect.

4.2 Sarvega XSLT Benchmark results

The Sarvega XSLT Benchmark was updated in 2003. When it was released the results of the
latest XSLT processors were included in the benchmark documentation [sarp]. The overall
results of this benchmark are depicted in Figure 4-2.

Figure 4-2 Sarvega XSLT Benchmark Results1

The results are similar to the XSLTMark. Msxml and XT are the fastest processors. The
new processor jd.xslt got the best score. The performance of the popular processor Xalan-J
is still the poorest. Unlike in the XSLTMark it is also outperformed by Xalan-C++. Since
version 1.1 of the XSLTMark Xalan-C++ experienced many improvements. Hence, the
version 1.5 is more optimized and obviously gains benefits from its implementation in C.
However, it is still not able to keep up pace with some other Java processors like jd.xslt.

Since the XSLT Benchmark’s last release some processors have been improved. In order to
test them the Sarvega XSLT Benchmark is executed on the testing configuration described in
Section 3.5. These tests are limited to six XSLT processors: jd.xslt 1.5.5, Msxml 4.0, Saxon

1 derived from [sarp]; used versions: jd.xslt 1.5.1, libxslt 1.0.30/libxml2 2.4.19, msxml 4.0, resin 3.0.1-beta, saxon 6.5.2, xalan-

c++ 1.5, xalan-j 2.5, xsltc 2.3.1, xt 20020426a

4. XSLT processor performance comparison

 25

6.5.3, Saxon 7.9.1, Xalan-J 2.6.0 and XT 20020426a. Figure 4-3 and Figure 4-4 show the
results of the 15 test cases. For each test the transformation time of the six XSLT processors
is represented by bars. The shorter the bar, the better the performance.

0.00 0.01 0.01 0.02 0.02 0.03 0.03

wai.xsl

rdft.xsl

sp.xsl

nitf-stylized.xsl

article2html.xsl

schematron-basic.xsl

cogx2xtm.xsl

recipes.xsl

page.xsl

mathmlc2p.xsl

sc
rip

t

t in sec

XT 20020426a

Xalan-J

Saxon 7.9.1

Saxon 6.5.3.
Msxml 4.0

jd.xslt 1.5.5

Figure 4-3 Sarvega XSLT Benchmark Results Set I

The first set of transformations, depicted in Figure 4-3, is executed in less than 0.03 seconds.
All tests are executed properly except from the schematron-basic.xsl transformation that does
not produce any output with Saxon 7.9.1.

The second set of transformations, shown in Figure 4-4 is still executed in less than one
second. Again the processor Saxon 7.9.1 creates no output for one transformation. This
time it is the stylesheet chess.xsl that does not produce any result. Hence this transformation
as well as the schematron-basic.xsl is neglected in the results for this test case.

The behavior of the processors is very homogenous throughout the tests. In the benchmark
tests it does not happen that one processor performs extremely good with one
transformation but extremely bad with a different one. For most of the scenarios the

4.2 Sarvega XSLT Benchmark results

 26

sequence of the best performing processors is the same. Xalan-J is the slowest processor for
every test. The two versions of Saxon share the next positions. Usually Saxon 7.9.1
performs worse than the older version Saxon 6.5.3. This is probably because of the
implementation of XSLT 2.0 functions which have a negative effect on the performance. In
addition Saxon 7.9.1 fails to create a correct result for some transformations.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

markme.xsl

xmlspec.xsl

chess.xsl

xsltdoc.xsl

docbook.xsl

sc
ri

pt

t in sec

XT 20020426a

Xalan-J

Saxon 7.9.1

Saxon 6.5.3.

Msxml 4.0

jd.xslt 1.5.5

Figure 4-4 Sarvega XSLT Benchmark Results Set II

The three processors XT, jd.xslt and Msxml are pretty close in their performance as well. XT
usually is slightly slower than the others, but sometimes a little bit faster.

0.00 0.50 1.00 1.50 2.00 2.50

XT 20020426a

Xalan-J

Saxon 7.9.1

Saxon 6.5.3.

Msxml 4.0

jd.xslt 1.5.5

pr
oc

es
so

r

overall score

Figure 4-5 Sarvega XSLT Benchmark Overall Score

5. Performance of Clio-generated XSLT

 27

The overall scores are depicted in Figure 5-5. Msxml got the best score, jd.xslt with slightly
worse performance places second. The difference between jd.xslt and Msxml is always very
marginally. Sometimes jd.xslt is faster and sometimes Msxml. The example of jd.xslt shows
that Java processors can keep up with the transformation speed of C++ pendants.
Interestingly the very commonly used engine Xalan-J has only a poor performance.

Supported XSLT functionality of the XSLT processor must not be neglected when
comparing the results. If certain XSLT functions are required for an application, the
performance is less important. In those cases Saxon can be a better choice than e.g. XT.

5 Performance of Clio-generated XSLT

The following chapter introduces the data mapping tool Clio. First the motivation for the
development of Clio is provided. Its functionalities are described. Finally Clio is used to
generate XSLT stylesheets and their performance is measured.

5.1 Motivation of the Clio project2

The amount of data that is produced worldwide is rapidly increasing. It exists on different
media like magnetic and optical discs, tapes and flash memory chips. Storing, querying and
integrating this data are major challenges for the information industry.

One challenge is the integration of heterogeneous data. Data intensive applications in
electronic document interchange and commerce environments, global information systems
and data warehousing integrate data from multiple, often legacy sources. Databases are built
using different schemas and data types. Legacy data has to be integrated into new systems.
A major problem is the mapping of heterogeneous schemas. XML data also uses different
schemas. The data is used in various ways so it has to be transformed from one format into
another. This brings up the need for mappings between source and target schemas. Creating
the mappings manually is difficult and very time-consuming. Due to the growing amount of
data it has to be done more quickly and still accurately. Hence tools that support the user in
this process are required. The goal of these tools is the discovery of a query or a set of
queries that map the data sources to their new structure.

IBM currently develops a software prototype that has the objective to fulfill these
requirements. The name of the project is Clio. Clio got its name from the muse of history
because it supports the integration of ‘historic’ legacy data.

5.2 Functionalities of Clio

Clio creates mappings between two data representations semi-automatically. User input is
required throughout the mapping process to ensure a correct mapping. Clio supports
relational database schemas and XML schemas.

This paper focuses on the mapping component for XML schemas. Figure 5-1 gives a
schematic overview of the schema mapping process.

2 Information is derived from [HMH01], [MHH00], [MHH01], [NHT01], [PHV02] and [YMH01].

5.2 Functionalities of Clio

 28

Figure 5-1 Generation of XSLT with Clio (schematic view)

At the beginning of each transformation there is a source XML document that is valid to a
source XML schema. There is also a target XML schema. The source XML document has
to be transformed into a target XML document that is valid to this target schema. The
purpose of Clio is to realize this transformation and make any manual coding of XSLT
superfluous.

The first step of the mapping process is the import of the source and the target schema into
Clio. Then the user must create a mapping between them. Figure 5-2 shows the graphical
user interface of Clio that supports the user during this process. It can easily be done by
drawing arrows with simple mouse clicks. These arrows represent references from one
schema to the other.

The number of possible mappings between two data sources can be enormous. This is why
users are not able to conceive all of the possible alternatives, and hence may have difficulties
to find the correct mapping for a specific application. Clio supports the user in finding a
proper mapping. It systematically considers and manages alternative mappings. However
the final choice of mappings must necessarily be made by a user who understands the
semantics of the target application.

Clio uses mining techniques to discover and characterize the relationships between source
and target schema and data. It automatically suggests correspondences between source and
target attributes. Often the attribute names reveal hardly any information about the
semantics of the data values. Only the data values in the attribute columns can convey the
semantic meaning of the attribute. For each attribute, Clio analyzes these data values and
derives a set of features. The overall feature set forms the characteristic signature of an
attribute.

As the result of the mapping process Clio generates XSLT. This XSLT and the source
document are processed by an XSLT processor. The output of this transformation is a target
document that is valid to the target XML schema.

Target XML
Schema

Target XML
Document

Clio
Semi-automatic

Mapping

Source XML
Schema

Source XML
Document

XSLT
Stylesheet

XSLT
Processor

5. Performance of Clio-generated XSLT

 29

Dependent on source and target schema Clio also generates XQuery or SQL. For XML
transformations the prototype XSLT generator engine creates two different sets of XSLT
stylesheets:

• Ordinary stylesheet set

• Minimal union stylesheet set

Each set contains two XSLT scripts. These two scripts are applied sequentially to the input
data. The transformation is broken down into these two steps because of performance
benefits which became obvious during the development of Clio.

The difference between the ordinary stylesheets and the minimal union stylesheets is their
behavior when processing hierarchical data. The minimal union scripts do an additional
merge of data in the following scenario:

There is a set of elements where two elements have

1. the same values for their atomic sub-elements and attributes and

2. different set-valued components.

These two elements will be merged into one by merging their subsets of data. The minimal
union is a recursive operation.

Example: There are two <state> elements, which have three sub elements
<state_name>, <country_name> and <continent_name>. The element
<country_name> and <continent_name> are the same, but they have different
<state_name> elements. The two <state> elements would be merged into one by
merging their <state_name> elements.

Due to this difference for certain input data and transformations the minimal union
stylesheets create a different result than the ordinary stylesheets. However, for many cases
the result is exactly the same. Hence it is a good example that XSLT is very flexible to use
and offers different alternatives to achieve one goal.

5.3 Clio Test cases

There are a lot of different possible Clio transformations. However, there is a certain
amount of basic transformations that are part of many different transformation scenarios.
The combination of these basic transformations makes up the complete transformation.

The following tests are limited to certain basic transformations. The purpose of the tests is
to get information regarding the following questions:

1. Are there performance differences between the ordinary and minimal union scripts
when the same output data is created?

2. How big are these differences?

3. Is there a type of transformation that consumes the major amount of transformation
time?

4. How do the transformations scale with bigger input files?

5.3 Clio Test cases

 30

5. How feasible are those transformation in general? Are there certain transformations
that are unlikely to be executed in reasonable time at all?

6. Are there XSLT processors that perform much better than others and therefore
should be used preferably for certain transformations?

The Sarvega XSLT Benchmark is enhanced with the Clio-generated scripts to measure their
performance. The Java XSLT engines jd.xslt, Xalan-J, XT, Saxon 6.5.3 as well as Saxon 7.9.1
and the C++ XSLT processor MSXSL 4.0 are used.

The input data is generated with ToXgene. The files size grows – the number of elements
doubles from one file to the other. Hence the charts do not represent a linear curve if the
transformation time grows linearly. However this presentation style was chosen to show the
development of the transformation speed with small and big XML files without executing
many tests. The complete test result numbers are listed in the appendix.

5.3.1 Transforming attributes to elements

The transformation of an XML element into an XML attribute is a commonly used data
transformation. Figure 5-2 shows a simple transformation of an XML element into an
attribute.

Figure 5-2 Clio mapping attributes to elements

The number of <element> elements has the major impact on the transformation speed
because it is the only element that is processed during the transformation.

The intermediate output that is generated by the first script has more elements than the
original document because for every source attribute an additional element
<sub_element> is created. During the second transformation only these elements
appear in the final result. Their number is equivalent to the number of <element>
elements from the input file.

5. Performance of Clio-generated XSLT

 31

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1000 2000 4000 8000 16000

elements

t i
n

se
c

jd.xslt 1.5.5

Msxml 4.0

Saxon 6.5.3.

Saxon 7.9.1

Xalan-J 2.6.0

XT 20020426a

Figure 5-3 Results a2e1.xsl

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

1000 2000 4000 8000 16000

elements

t i
n

se
c

jd.xslt 1.5.5

Msxml 4.0

Saxon 6.5.3.

Saxon 7.9.1

Xalan-J 2.6.0

XT 20020426a

Figure 5-4 Results a2e2.xsl

For the first script the transformation is finished in less than two and for the second script in
less than five seconds. Obviously the processing time grows linearly with an increased
number of elements.3

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1000 2000 4000 8000 16000

elements

t i
n

se
c

jd.xslt 1.5.5

Msxml 4.0

Saxon 6.5.3.

Saxon 7.9.1

Xalan-J 2.6.0

XT 20020426a

Figure 5-5 Results a2emu1.xsl

0

1

2

3

4

5

6

1000 2000 4000 8000 16000

elements

t i
n

se
c

jd.xslt 1.5.5

Msxml 4.0

Saxon 6.5.3.

Saxon 7.9.1

Xalan-J 2.6.0

XT 20020426a

Figure 5-6 Results a2emu2.xsl

The transformation using the minimal union stylesheets shows a worse performance than the
ordinary transformation. The first script is completed in almost the same time as before.
The intermediate result file is bigger because it has additional attributes for the <element>
element.

The second transformation of the minimal union stylesheet set is processed slower than the
ordinary second script. The XSLT code is more complex. This is a good example for two
stylesheets that create the same results but are processed within different times.

3 Once again the hint: Due to doubling the file size the curve looks square even if the growth is linear.

5.3 Clio Test cases

 32

5.3.2 Transforming elements to attributes

The opposite direction of the preceding transformation converts XML elements to XML
attributes. The mapping is shown in Figure 5-7.

Figure 5-7 Clio mapping elements to attributes

The ordinary transformation is completed in less than five seconds. The processing time is
approximately the same as in the transformation of attributes to elements.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1000 2000 4000 8000 16000

elements

t i
n

se
c

jd.xslt 1.5.5

Msxml 4.0

Saxon 6.5.3.

Saxon 7.9.1

Xalan-J 2.6.0

XT 20020426a

Figure 5-8 Results e2a1.xsl

0

0.5

1

1.5

2

2.5

3

3.5

1000 2000 4000 8000 16000

elements

t i
n

se
c

jd.xslt 1.5.5

Msxml 4.0

Saxon 6.5.3.

Saxon 7.9.1

Xalan-J 2.6.0

XT 20020426a

Figure 5-9 Results e2a2.xsl

For the transformation with the minimal union option the behavior is comparable to the
attributes-to-elements transformation, too. The time consumption of the second script is
higher which makes the overall performance of the minimal union transformation worse
than the ordinary transformation.

5. Performance of Clio-generated XSLT

 33

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1000 2000 4000 8000 16000

elements

t i
n

se
c

jd.xslt 1.5.5

Msxml 4.0

Saxon 6.5.3.

Saxon 7.9.1

Xalan-J 2.6.0

XT 20020426a

Figure 5-10 Results e2amu1.xsl

0

1

2

3

4

5

6

1000 2000 4000 8000 16000

elements

t i
n

se
c

jd.xslt 1.5.5

Msxml 4.0

Saxon 6.5.3.

Saxon 7.9.1

Xalan-J 2.6.0

XT 20020426a

Figure 5-11 Results e2amu2.xsl

The elements-to-attributes transformation is another example how two different ways of
producing the same result can consume different times.

5.3.3 Flat hierarchy to flat hierarchy

The following mapping is a simple copy of XML elements. The source schema is equal to
the target schema. The purpose of this transformation is to check the performance of a very
basic copying process without any structural changes of the XML document. This
knowledge is helpful for the upcoming transformations.

Figure 5-12 Clio mapping flat hierarchy to flat hierarchy

The input document is generated with ToXgene. It has 100 to 1600 <state> elements.
Each of them has the three sub-elements <state_name>, <country_name> and
<continent_name>. The ordinary transformation is executed very fast for the first as
well as the second script.

5.3 Clio Test cases

 34

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

100 200 400 800 1600

elements

t i
n

se
c

jd.xslt 1.5.5

Msxml 4.0

Saxon 6.5.3.

Saxon 7.9.1

Xalan-J 2.6.0

XT 20020426a

Figure 5-13 Results f2f1.xsl

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

100 200 400 800 1600

elements

t i
n

se
c

jd.xslt 1.5.5

Msxml 4.0

Saxon 6.5.3.

Saxon 7.9.1

Xalan-J 2.6.0

XT 20020426a

Figure 5-14 Results f2f2.xsl

The transformation with the minimal union option is executed slightly slower than the
ordinary transformation.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

100 200 400 800 1600

elements

t i
n

se
c

jd.xslt 1.5.5

Msxml 4.0

Saxon 6.5.3.

Saxon 7.9.1

Xalan-J 2.6.0

XT 20020426a

Figure 5-15 Results f2fmu1.xsl

0

0.05

0.1

0.15

0.2

0.25

0.3

100 200 400 800 1600

elements

t i
n

se
c

jd.xslt 1.5.5

Msxml 4.0

Saxon 6.5.3.

Saxon 7.9.1

Xalan-J 2.6.0

XT 20020426a

Figure 5-16 Results f2fmu2.xsl

Obviously the execution time for the ordinary transformation as well as the minimal union
transformation grows linearly with an increasing number of input elements.

5.3.4 Flat hierarchy to nested hierarchy

For this test Clio is used to generate a mapping from a flat hierarchy to a nested hierarchy.
The number of nesting levels is varied from two to four. The sample scenario is represented
by a hierarchy of continents that contain countries. These countries contain states. For the
sample XML files the names of the elements are represented by integer values to keep the file
structure simple. It is possible that e.g. one country name shows up multiple times, where
each time it belongs to a different continent. This might not match reality however it keeps
the grouping of the values simple.

5. Performance of Clio-generated XSLT

 35

Two levels of nesting

With two levels of nesting the input file has a number of <country> elements. Each one
has the sub-elements <continent_name> and <country_name>. These elements
are mapped to a number of <continent> elements where each one has a sub-element
<continent_name> and several sub-elements <country>. The <country>
element contains all the <country_name> elements that have the same continent name.

Figure 5-17 Clio mapping flat hierarchy to nested hierarchy (2 levels)

So this transformation realizes a grouping of all countries according to the continent that
they belong to. Multiple <country> elements that have the same
<continent_name> and <country_name> appear only once in the result.

The input document has 100 to 1600 <country> elements. The file size varies from 8 KB
to 130 KB.

The results of the ordinary transformation are depicted in Figure 5-18 and Figure 5-19.

0

10

20

30

40

50

60

70

80

100 200 400 800 1600

elements

t i
n

se
c

jd.xslt 1.5.5

Msxml 4.0

Saxon 6.5.3.

Saxon 7.9.1

Xalan-J 2.6.0

XT 20020426a

Figure 5-18 Results f2n2l1.xsl

0

20

40

60

80

100

120

140

160

3254 11394 46162 179382 719798

elements

t i
n

se
c

jd.xslt 1.5.5

Msxml 4.0

Saxon 6.5.3.

Saxon 7.9.1

Xalan-J 2.6.0

XT 20020426a

Figure 5-19 Results f2n2l2.xsl

The first script creates huge files as intermediate results. For an input file with 1600
<country> elements (130 KB) the intermediate file has still 1600 <country> elements.
However, each one includes not only one <continent_name> but also all
<country_name> elements that belong to this <continent_name> element. This

5.3 Clio Test cases

 36

increases the intermediate file size to 22.1 MB. The elements in the chart are
<country_name> elements.

Due to this huge file size the XSLT processor requires up to 250 MB of memory during the
transformation4. Having in mind the size of the input document (130 KB) this is a huge
amount. Obviously the execution time grows faster than linearly.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

100 200 400 800 1600

elements

t i
n

se
c

jd.xslt 1.5.5

Msxml 4.0

Saxon 6.5.3.

Saxon 7.9.1

Xalan-J 2.6.0

XT 20020426a

Figure 5-20 Results f2n2lmu1.xsl

0

0.2

0.4

0.6

0.8

1

1.2

1.4

300 600 1200 2400 4800

elements

t i
n

se
c

jd.xslt 1.5.5

Msxml 4.0

Saxon 6.5.3.

Saxon 7.9.1

Xalan-J 2.6.0

XT 20020426a

Figure 5-21 Results f2n2lmu2.xsl

With the minimal union option the transformation is executed much faster and consumes
less memory during the transformation process. The intermediate result file that is generated
is much smaller (750 KB instead of 22.1 MB).

The execution time grows linearly – a big advantage compared to the ordinary scripts.

Three levels of nesting

Increasing the nesting level by one adds the <state_name> to the input schema. The
source document contains a list of states where each one has its <state_name>, a
<country_name> and a <continent_name>.

Figure 5-22 Clio mapping flat hierarchy to nested hierarchy (3 levels)

4 This value is measured with the Windows Task Manager. The value is not expected to be very accurate, but it gives a good

idea of the consumed memory.

5. Performance of Clio-generated XSLT

 37

The mapping in Figure 5-22 shows that the target schema does two grouping operations
now. The countries that belong to a continent are assigned to a group and each of the
countries contains all the states that belong to them as a sub-element. Just like the preceding
transformation with two levels of nesting multiple combinations of <continent_name>,
<country_name> and <state_name> elements appear only once in the result. The
increased complexity of the transformation is reflected in the test results in Figure 5-23 and
Figure 5-24. The elements in the chart are <state> elements.

0

100

200

300

400

500

600

100 200 400

elements

t i
n

se
c

jd.xslt 1.5.5

Msxml 4.0

Saxon 6.5.3.

Saxon 7.9.1

Xalan-J 2.6.0

XT 20020426a

Figure 5-23 Results f2n3l1.xsl

0

5

10

15

20

25

30

35

40

45

24726 187314

elements

t i
n

se
c

jd.xslt 1.5.5

Msxml 4.0

Saxon 6.5.3.

Saxon 7.9.1

Xalan-J 2.6.0

XT 20020426a

Figure 5-24 Results f2n3l2.xsl

The first script of the ordinary transformation last between 61 seconds (Msxml) and 528
seconds (Xalan-J). Due to this long time the test is limited to only three different input
documents. The intermediate result that is generated for the input file with 100 <state>
elements (47 KB) has a size of 65 MB. The memory consumption during the transformation
process is up to 300 MB.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

100 200 400

elements

t i
n

se
c

jd.xslt 1.5.5

Msxml 4.0

Saxon 6.5.3.

Saxon 7.9.1

Xalan-J 2.6.0

XT 20020426a

Figure 5-25 Results f2n3lmu1.xsl

0

0.2

0.4

0.6

0.8

1

1.2

400 800 1600

elements

t i
n

se
c

jd.xslt 1.5.5

Msxml 4.0

Saxon 6.5.3.

Saxon 7.9.1

Xalan-J 2.6.0

XT 20020426a

Figure 5-26 Results f2n3lmu2.xsl

With the minimal union option the transformation finishes much faster and consumes much
less memory. The elements for the second script are <state_name> and <ClioSet>
elements. The transformation time is reduced from about 550 s to approximately 1 s for the
XSLT engine Xalan-J, which is enormous.

5.3 Clio Test cases

 38

Four levels of nesting

Figure 5-27 Clio mapping flat hierarchy to nested hierarchy (4 levels)

This test is not feasible. With a sample XML file that contains 100 <fed_state>
elements (57 KB filesize) the first script consumes more than 300 MB of memory. The
transformation is too slow to finish in a reasonable time.

Unlike the transformations in 5.3.1 and 5.3.2 this test shows that XSL transformations can
consume a lot of memory and time to process. An increased complexity of the
transformation causes an increase of the transformation time. In addition the time to process
grows non-linearly with an increasing file size.

Another result that became obvious during this test is that the realization of an XSL
transformation is very important for the performance. The ordinary script and the minimal
union scripts created the same result. However, the execution time of the minimal union
scripts was much better. Hence it is important to know about theses differences. This
knowledge enables XSLT programmers to optimize their manually written code. It is also
helpful to take these differences into consideration for the automatic generation of XSLT
code.

5.3.5 Nested hierarchy to flat hierarchy

The opposite operation of the preceding transformation is the mapping of a nested hierarchy
to a flat hierarchy. Due to the exclusion of multiple combinations of
<continent_name>, <country_name> and <state_name> it is impossible to
run the inverse transformation with the output file from 5.3.4 and generate the input file that
was used for the transformation in 5.3.4. That is why a new set of input files is generated
with ToXgene for this test. The number of <state_name> elements varies from 100 to
1600.

5. Performance of Clio-generated XSLT

 39

Figure 5-28 Clio mapping nested hierarchy to flat hierarchy (3 levels)

The transformation is executed in less than one second for all XSLT processors.

0

0.05

0.1

0.15

0.2

0.25

100 200 400 800 1600

elements

t i
n

se
c

jd.xslt 1.5.5

Msxml 4.0

Saxon 6.5.3.

Saxon 7.9.1

Xalan-J 2.6.0

XT 20020426a

Figure 5-29 Results n2f1.xsl

0

0.05

0.1

0.15

0.2

0.25

100 200 400 800 1600

elements

t i
n

se
c

jd.xslt 1.5.5

Msxml 4.0

Saxon 6.5.3.

Saxon 7.9.1

Xalan-J 2.6.0

XT 20020426a

Figure 5-30 Results n2f2.xsl

The minimal union transformation finishes in almost the same time.

0

0.05

0.1

0.15

0.2

0.25

0.3

100 200 400 800 1600

elements

t i
n

se
c

jd.xslt 1.5.5

Msxml 4.0

Saxon 6.5.3.

Saxon 7.9.1

Xalan-J 2.6.0

XT 20020426a

Figure 5-31 Results n2fmu1.xsl

0

0.05

0.1

0.15

0.2

0.25

0.3

100 200 400 800 1600

elements

t i
n

se
c

jd.xslt 1.5.5

Msxml 4.0

Saxon 6.5.3.

Saxon 7.9.1

Xalan-J 2.6.0

XT 20020426a

Figure 5-32 Results n2fmu2.xsl

This test showed that for certain XSLT transformations different approaches can produce
the same result in the same time.

5.3 Clio Test cases

 40

5.3.6 Nested hierarchy to nested hierarchy

The mapping from a nested hierarchy to a nested hierarchy looks like a simple copy
operation. However for this test case there is more to it. During the transformation multiple
occurrences of the same continent or country are put together into one hierarchy level.

Figure 5-33 Clio mapping nested hierarchy to nested hierarchy (3 levels)

0

200

400

600

800

1000

1200

100 200 400

elements

t i
n

se
c

jd.xslt 1.5.5

Msxml 4.0

Saxon 6.5.3.

Saxon 7.9.1

Xalan-J 2.6.0

XT 20020426a

Figure 5-34 Results n2n1.xsl

0

20

40

60

80

100

120

26610 216456 1611298

elements

t i
n

se
c

jd.xslt 1.5.5

Msxml 4.0

Saxon 6.5.3.

Saxon 7.9.1

Xalan-J 2.6.0

XT 20020426a

Figure 5-35 Results n2n2.xsl

Figure 6-34 and Figure 6-35 show that this transformation is very slow. For the ordinary
scripts the intermediate result file is very big (66 MB for an input file of 58 KB).
The first script consumes up to 340 MB of memory during the transformation. The second
script is even worse and takes up to 500 MB of memory during the transformation. The
elements in the chart are <state_name> elements. The second script is not executed for
all the input files with Saxon 6.5.3 and Xalan-J because the tests did not complete in a
reasonable time.

5. Performance of Clio-generated XSLT

 41

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

100 200 400 800 1600

elements

t i
n

se
c

jd.xslt 1.5.5

Msxml 4.0

Saxon 6.5.3.

Saxon 7.9.1

Xalan-J 2.6.0

XT 20020426a

Figure 5-36 Results n2nmu1.xsl

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

600 1200 2400 4800 9600

elements

t i
n

se
c

jd.xslt 1.5.5

Msxml 4.0

Saxon 6.5.3.

Saxon 7.9.1

Xalan-J 2.6.0

XT 20020426a

Figure 5-37 Results n2nmu2.xsl

The tests with the minimal union option are executed much faster – however they are
producing a different result. This is due to the additional merge operation that is done in the
minimal union stylesheets. The elements in the second script are <state_name> and
<ClioSet> elements.

This last test shows big performance differences between the ordinary stylesheets and the
minimal union stylesheets. Different results are produced. However, one idea becomes
obvious: For some transformations modifications of the data structure that enable the usage
of a better performing XSLT stylesheet and still produce the same result are worth to be
taken into consideration.

5.3.7 Summary for Clio transformations

The tests of Clio generated XSLT stylesheets showed performance differences between the
ordinary scripts and the minimal union scripts. For some transformations these differences
were very small, for others they were enormous, e.g. the transformation from a flat into a
nested hierarchy which performed about 500 times better with the minimal union scripts.
However, the minimal union stylesheets did not have the best performance all the time. For
example the transformation of attributes to elements was executed faster with the ordinary
stylesheets.

Apart from the effect of stylesheets the XSLT processors had a major impact on the
transformation time. The sequence of best performing processors is the same as in the
XSLT Benchmark tests. However, the differences are more obvious. Due to an increased
number of elements the disadvantages of XSLT engines like Xalan-J turn out more clearly.
In general Msxml has the best performance.

Some transformations are not feasible to be used in highly demanded data transformation
areas. Their execution is too slow. Especially with an increased number of elements some
transformations could last for hours. The dependency on the number of elements is linearly
for many transformations. The most time consumptive operations are modifications of the
document structure. For the Clio tests this is for example the transformation from a flat
hierarchy into a nested hierarchy. Due to multiple nested for-each-loops that are used in the
ordinary scripts to perform the transformation the processing time grows non-linearly. The

6.1 Existing approaches

 42

minimal union stylesheets work with less for-each-loops and show a much better
performance.

The Clio-supported generation of XSLT saves a lot of time compared to manually coding
XSLT. The transformations can be performed quickly and results are presented
instantaneously. The mapping component of Clio helps to find a correct mapping of two
data representations. Nevertheless there is one downside to the automatic generation of
XSLT. The code is harder to read for humans. In order to manually adapt this code the
developer needs profound XSLT knowledge.

6 Improving XSLT performance

The Clio tests in Chapter 5 show that XSL transformations speed can be very slow. So it is
important to know how the XML data, the XSLT code and the XSLT processor can affect
the performance of the XSL transformation.

Chapter 6 covers several aspects and approaches of how the performance of XSL
transformation can be improved. There has not been a lot of research in this area. The
following sections introduce some ideas how to avoid some pitfalls and give a number of
improvements that can be applied by XSLT developers to improve their XSLT code.

Some references to existing ideas and approaches of how to improve XSLT performance are
given in Section 6.1.

When thinking of ways to improve XSLT performance there are three parameters that can be
modified in order to achieve that goal. At first the input documents can be changed. In
Section 6.2 the question of how the document structure affects the transformation speed is
discussed.

The second possibility is to modify the XSLT code. As seen in Chapter 5 there are often
different ways to realize an XSL transformation. The difference of the performance of these
solutions can be enormous. In Section 6.3 some ideas are tested and different approaches
are compared to each other.

Another way to improve the XSL transformation speed is optimizing the XSLT processor.
Section 6.4 talks about some ideas of how XSLT processors can be optimized.

Another approach is to implement XSLT functionalities in a hardware device. DataPower
delivers its hardware XSLT processor as a solution for web development. More details can
be found in Section 6.5.

6.1 Existing approaches

Since 1999 the popularity of XSLT increased continuously. Nevertheless, it is still a new
language and especially its performance was neglected by users and XSLT processor
implementers for a while.

Currently available XSLT literature covers the question of performance as a minor point.
There is one section in Michael Kay’s XSLT Programmers Reference [Kay00] that presents some
ideas of how XSLT performance can be improved. Sal Mangano gives some hints in his

6. Improving XSLT performance

 43

XSLT Cookbook [Man03] as well. In Professional XSL [CCD01] the authors also introduce
certain ideas to positively affect XSLT performance.

Additional advice can be found in newsgroups like the XSL-list [mulb]. Michael Kay wrote a
list of performance improvements that was posted on the XSL-list [dpaw]. Jenni Tennison
has a small section about XSLT performance improvements on her website [jten], too.
These sources give a starting point for the investigation of XSLT performance. In the
following sections some of these ideas are investigated by creating sample scenarios.

6.2 Modifications of input/output documents

The first way to improve XSLT performance is to change the structure of the XML data that
is transformed. Of course there is the question whether the effort of changing the XML
document is worth of being done just in order to speed up another transformation.
Sometimes the efforts of changing the structure of the document are useless because the
additional transformation destroys all the benefits.

When developing new XML applications and new XML schemas developers have complete
control of the XML data. They can create it according to the needs of fast transformations.
They take this XML data to transform it into other formats e.g. for presenting it on different
hardware devices like PC, cell phone or PDA. If performance problems occur during these
transformations the developers could store their data according to a different XML schema –
a schema that allows faster transformations for presenting the data.

Some ideas of how to modify the data format for input documents are discussed in the
following sections. For a subset of these ideas test cases are executed in order to measure
performance benefits.

6.2.1 Splitting up big input files

One idea, also recommended by Michael Kay, is to split up big input files into smaller units.
In order to find out whether this assumption has performance advantages the biggest file of
the transformation of elements to attributes (Section 5.3.2, 16000 elements, 12.6 MB) is split
into ten files. The XSLT stylesheet is applied to these files.

6.2 Modifications of input/output documents

 44

0

2

4

6

8

10

12

14

16

18

jd.
xs

lt 1
.5.

5

Msx
ml 4

.0

Sax
on

 6.
5.3

.

Sax
on

 7.
9.1

Xala
n-J

 2.
6.0

XT 20
02

04
26

a

t i
n

se
c

Figure 6-1 Results e2a1.xsl – Complete file

0

2

4

6

8

10

12

14

16

jd.
xs

lt 1
.5.

5

Msx
ml 4

.0

Sax
on

 6.
5.3

.

Sax
on

 7.
9.1

Xala
n-J

 2.
6.0

XT 20
02

04
26

a

t i
n

se
c

elements10.xml
elements9.xml
elements8.xml
elements7.xml
elements6.xml
elements5.xml
elements4.xml
elements3.xml
elements2.xml
elements1.xml

Figure 6-2 Results e2a1.xsl - Sum of single files

When the first script is applied to the complete file, the transformation time varies from 3.8 s
(Msxml) to 16 s (Xalan-J). The same transformation executed with the separate files is
completed in only 3.8 s (Msxml) to 13.5 s (Xalan-J). The chart in Figure 6-1 shows the
transformation time for the complete file. Figure 6-2 depicts the single transformations and
their sum which is represented by the curve at the top.

0

100

200

300

400

500

600

700

800

jd.
xs

lt 1
.5.

5

Msx
ml 4

.0

Sax
on

 6.
5.3

.

Sax
on

 7.
9.1

Xala
n-J

 2.
6.0

XT 20
02

04
26

a

t i
n

se
c

Figure 6-3 Results e2a2.xsl - Complete file

0

10

20

30

40

50

60

70

80

90

jd.
xs

lt 1
.5.

5

Msx
ml 4

.0

Sax
on

 6.
5.3

.

Sax
on

 7.
9.1

Xala
n-J

 2.
6.0

XT 20
02

04
26

a

t i
n

se
c

intermediate10.xml
intermediate9.xml
intermediate8.xml
intermediate7.xml
intermediate6.xml
intermediate5.xml
intermediate4.xml
intermediate3.xml
intermediate2.xml
intermediate1.xml

Figure 6-4 Results e2a2.xsl - Sum of single files

The difference between the complete file and the single files is bigger for the second
transformation. While the slowest processor Xalan-J needs 700 s to finish the complete file it
only takes 83 s for the single files. The memory consumption is lower, too.

For this test case there are performance benefits when splitting up an input file into smaller
units. However, one issue that is neglected in this scenario is that the input file had to be
split up. For this test it was done manually. Taking this additional time as well as the time
for the merge of the output documents into consideration the advantage might vanish for
other cases.

In addition the separate processing for single file units is not possible for every scenario.
Complex hierarchical data that is represented in one schema can not be torn apart into
multiple files.

6. Improving XSLT performance

 45

6.2.2 Using attributes instead of elements

The number of nodes determines the complexity of a document. Thus reducing the nodes
by using attributes instead [dpaw] could reduce the complexity of a transformation.

In order to check the consequences of this modification two sets of files are created. Each
set contains ten files. The number of elements of the first set varies between 1,000 and
256,000. Each element contains one integer number. The second set contains the same
integer numbers. However, they are saved as an attribute of the parent element.

The XSLT that is applied to the input files lists the content of all elements or attributes.

0

1

2

3

4

5

6

7

1000 2000 4000 8000 16000 32000 64000 128000 256000

elements

t i
n

se
c

jd.xslt 1.5.5

Msxml 4.0

Saxon 6.5.3.

Saxon 7.9.1

Xalan-J 2.6.0

XT 20020426a

Figure 6-5 Results elementcontent.xsl

0

20

40

60

80

100

120

140

160

180

200

1000 2000 4000 8000 16000 32000 64000 128000 256000

elements

t i
n

se
c

jd.xslt 1.5.5

Msxml 4.0

Saxon 6.5.3.

Saxon 7.9.1

Xalan-J 2.6.0

XT 20020426a

Figure 6-6 Results attributecontent.xsl

Obviously the execution of the transformation is faster when using attributes instead of
elements. The differences occur with all processors. They vary between 2.5 per cent (XT)
and 36 percent (Msxml). However, they become most obvious with Xalan-J. The
attributecontent.xsl script is executed about 25 times faster than the elementcontent.xsl script.

Obviously the usage of attributes instead of elements can have a positive effect onto the
transformation speed.

6.2.3 Keep tag names short

The idea is that using shorter tag names for elements or attributes could reduce the
transformation speed of a script. In order to investigate this idea the same transformation is
applied to two sets of files where the only difference of these sets is the naming of the
elements. In one file the names for the tags are much longer than in the other one. This
difference also results in an increased file size.

6.3 Modifications of XSLT stylesheets

 46

0

50

100

150

200

250

300

350

400

100 200 400 800 1600 3200 6400 12800 25600

elements

t i
n

se
c

jd.xslt 1.5.5

Msxml 4.0

Saxon 6.5.3.

Saxon 7.9.1

Xalan-J 2.6.0

XT 20020426a

Figure 6-7 Results grouping_muench.xsl

0

50

100

150

200

250

300

350

400

100 200 400 800 1600 3200 6400 12800 25600

elements

t i
n

se
c

jd.xslt 1.5.5

Msxml 4.0

Saxon 6.5.3.

Saxon 7.9.1

Xalan-J 2.6.0

XT 20020426a

Figure 6-8 Results grouping_muench_long.xsl

The test shows that the length of the tag-names has only a minor effect on the
transformation time. All transformations are executed in approximately the same time, even
though the files with long tag names are bigger. This issue is also mentioned in Section 3.3.1,
where the document size is considered as a worse measure for performance than the number
of elements.

6.2.4 Keep the output documents small

This idea is based on the assumption that the less output has to be created during the
transformation the faster the transformation will be executed.

One sample scenario is the transformation of XML to HTML. Instead of enriching the
HTML output with a stylish markup it is better to use CSS. That way the transformation on
the server side is simplified and the client takes up parts of the load, because the CSS is
applied by the browser on the client side.

6.3 Modifications of XSLT stylesheets

The second approach to improve the performance of XSL transformations is to modify the
XSLT stylesheet. Out of the different ways to realize a transformation the best performing
one has to be found.

The following section introduces some alternative ways of coding XSLT. The produced
result is always the same. The goal is to find some rules that help XSLT developers to avoid
performance pitfalls in their transformations.

6.3.1 Prefer “pattern matching” and “selecting” over “filtering”

Sal Mangano discusses the question for the best way to select nodes in his book [Man03].
The alternatives are “pattern matching”, “selecting” and “filtering” nodes. Mangano’s
recommendation is to prefer pattern matching and selecting over filtering.

6. Improving XSLT performance

 47

The following test executes a transformation in the three different ways. The XSLT
stylesheet selects all the <country> elements with the <name> ‘11’ and outputs their
<capital> element. The stylesheet country_filtering.xsl looks like this:
<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 version="1.0">

<xsl:output method="text"/>

<xsl:template match="/">
 <xsl:apply-templates select="Source"/>
</xsl:template>

<xsl:template match="Source">
 <xsl:for-each select="country">
 <xsl:if test="@name='11'">
 <xsl:value-of select="@capital"/>
 </xsl:if>
 </xsl:for-each>
</xsl:template>

</xsl:stylesheet>

An option to this filtering method is using the ‘match’ attribute of the
<xsl:template> tag. The following code snippet shows the difference in the
country_matching.xsl stylesheet:
...
<xsl:template match="/">
 <xsl:apply-templates select="Source/country"/>
</xsl:template>

<xsl:template match="country[@name='11']">
 <xsl:value-of select="@capital"/>
</xsl:template>
...

The third option is to use a for-each-loop together with a selection function. The stylesheet
country_selecting.xsl looks like this:
...
<xsl:template match="/">
 <xsl:apply-templates select="Source"/>
</xsl:template>

<xsl:template match="Source">
 <xsl:for-each select="country[@name='11']">
 <xsl:value-of select="@capital"/>
 </xsl:for-each>
</xsl:template>
...

The output data that is generated with the three stylesheets is the same. The transformation
time is shown in Figure 6-9, 6-10 and 6-11.

6.3 Modifications of XSLT stylesheets

 48

0

1

2

3

4

5

6

7

1000 2000 4000 8000 16000 32000 64000 128000 256000

elements

t i
n

se
c

jd.xslt 1.5.5

Msxml 4.0

Saxon 6.5.3.

Saxon 7.9.1

Xalan-J 2.6.0

XT 20020426a

Figure 6-9 Results country_filtering.xsl

0

1

2

3

4

5

6

7

8

1000 2000 4000 8000 16000 32000 64000 128000 256000

elements

t i
n

se
c

jd.xslt 1.5.5

Msxml 4.0

Saxon 6.5.3.

Saxon 7.9.1

Xalan-J 2.6.0

XT 20020426a

Figure 6-10 Results country_matching.xsl

0

1

2

3

4

5

6

7

1000 2000 4000 8000 16000 32000 64000 128000 256000

elements

t i
n

se
c

jd.xslt 1.5.5

Msxml 4.0

Saxon 6.5.3.

Saxon 7.9.1

Xalan-J 2.6.0

XT 20020426a

Figure 6-11 Results country_selecting.xsl

Obviously there are hardly differences between the three stylesheets for this test case. Sal
Mangano mentioned in his book that the differences between these three stylesheets might
vanish over time. Obviously this already happened since he executed his test. Ideally the
XSLT developers do not have to worry about those differences in coding style. They write
XSLT in their preferred way. The XSLT processor internally executes the intended
operation in the fastest possible way.

6.3.2 Use the Muenchian method for grouping

Grouping elements is a transformation that is often needed for structural modifications of
XML documents. The Clio transformation in section 5.3.4 is an example for a grouping
operation.

There are different ways to solve the grouping problem. The Muenchian method is one of
them. It is named after Steve Muench, an XSLT expert who works for Oracle. The idea is
to use the <xsl:key> tag and the key() function to address the elements that have to be
grouped. The concept of the Muenchian grouping is explained in detail on Jenni Tennison’s
homepage [mgrp].

6. Improving XSLT performance

 49

The following stylesheet grouping_muench.xsl realizes the Muenchian grouping for the same
input file that is used in Section 5.3.4:
<?xml version="1.0" encoding="ISO-8859-1"?>
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:output method="xml" indent="yes"/>

<xsl:key name="continent_key" match="/Source/country/continent_name"
 use="."/>
<xsl:template match="/">
<continents>
 <xsl:for-each select="/Source/country/continent_name[generate-
 id(.)=generate-id(key('continent_key',.))]">
 <xsl:variable name="cont_name" select="."/>
 <continent>
 <xsl:copy-of select="$cont_name"/>
 <country>
 <xsl:for-each select="/Source/country[continent_name =
 $cont_name]/country_name">
 <xsl:copy-of select="."/>
 </xsl:for-each>
 </country>
 </continent>
 </xsl:for-each>
</continents>
</xsl:template>

</xsl:stylesheet>

Instead of using keys the same output can be produced by using the preceding-sibling axis.
This is done in the grouping_normal.xsl stylesheet:
<?xml version="1.0" encoding="ISO-8859-1"?>
<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:output method="xml" indent="yes"/>

<xsl:template match="/">
<continents>
 <xsl:for-each select="/Source/country[not(preceding-
 sibling::country/continent_name=./continent_name)]/continent_name">
 <xsl:variable name="cont_name" select="."/>
 <continent>
 <xsl:copy-of select="$cont_name"/>
 <country>
 <xsl:for-each select="/Source/country[continent_name =
 $cont_name]/country_name">
 <xsl:copy-of select="."/>
 </xsl:for-each>
 </country>
 </continent>
 </xsl:for-each>
</continents>
</xsl:template>

6.3 Modifications of XSLT stylesheets

 50

</xsl:stylesheet>

The execution time of the grouping_normal.xsl stylesheet is depicted in Figure 6-12. It is a very
time consumptive operation that runs up to more than half an hour. The grouping_muench.xsl
transformation (Figure 6-13) is finished much faster.

0

500

1000

1500

2000

2500

100 200 400 800 1600 3200 6400 12800 25600

elements

t i
n

se
c

jd.xslt 1.5.5

Msxml 4.0

Saxon 6.5.3.

Saxon 7.9.1

Xalan-J 2.6.0

XT 20020426a

Figure 6-12 Results grouping_normal.xsl

0

50

100

150

200

250

300

350

400

100 200 400 800 1600 3200 6400 12800 25600

elements

t i
n

se
c

jd.xslt 1.5.5

Msxml 4.0

Saxon 6.5.3.

Saxon 7.9.1

Xalan-J 2.6.0

XT 20020426a

Figure 6-13 Results grouping_muench.xsl

The following table shows the measured differences of the transformation time for the input
file with 25,600 <country> elements (2 MB):

 jd.xslt Msxml Saxon 6.5.3. Saxon 7.9.1 Xalan-J XT

normal 407.626 0.55 544.753 1.522 2197.71 553.906

muenchian 17.675 3.586 9.213 362 2.815 1.122

The behavior of the transformation time is very peculiar. For most of the XSLT processors
the normal transformation consumes a lot of time, except from Msxml and Saxon 7.9.1.
These two processors finish the same operation within a fraction of the time that the other
processors need.

The Muenchian grouping is completed much faster than the ordinary grouping for most of
the XSLT processors. The usage of the preceding-sibling axis might be a reason for this. In
order to find <continent_name> elements that did not occur in the document before
all the preceding siblings are checked. This is a very expensive operation.

However, the behavior of Msxml and Saxon 7.9.1 is different. Msxml has a worse
performance when executing the Muenchian method. Obviously Microsoft found a fast way
to implement the ordinary grouping. Maybe Msxml internally already creates something like
the key index. Explicitly creating such an index in the grouping_muench.xsl stylesheet consumes
extra time.

Interestingly Saxon 7.9.1 needs much more time to complete the Muenchian grouping. The
behavior is completely opposite of Saxon 6.5.3. This is a good example for the complexity of
XSLT performance. Measuring the transformation time of different XSLT stylesheets also
needs to be done with different processors, because the behavior could be completely
different.

6. Improving XSLT performance

 51

6.3.3 Usage of keys

Section 6.3.2 showed that the usage of keys can result in performance benefits for the
transformation. In order to check whether additional usage of the same key results in further
performance improvement, the key is used one more time in the highlighted part of the
following stylesheet grouping_muench2.xsl:
<?xml version="1.0" encoding="ISO-8859-1"?>
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:output method="xml" indent="yes"/>

<xsl:key name="continent_key" match="/Source/country/continent_name"
 use="."/>
<xsl:template match="/">
<continents>
 <xsl:for-each select="/Source/country/continent_name[generate-
 id(.)=generate-id(key('continent_key',.))]">
 <xsl:variable name="cont_name" select="."/>
 <continent>
 <xsl:copy-of select="$cont_name"/>
 <country>
 <xsl:for-each select="key('continent_key',.)">
 <xsl:copy-of select="../country_name"/>
 </xsl:for-each>
 </country>
 </continent>
 </xsl:for-each>
</continents>
</xsl:template>

</xsl:stylesheet>

The difference between grouping_muench.xsl and grouping_muench2.xsl is very small. The
additional usage of the key function did not result in further reduction of the transformation
time.

6.3 Modifications of XSLT stylesheets

 52

0

50

100

150

200

250

300

350

400

100 200 400 800 1600 3200 6400 12800 25600

elements

t i
n

se
c

jd.xslt 1.5.5

Msxml 4.0

Saxon 6.5.3.

Saxon 7.9.1

Xalan-J 2.6.0

XT 20020426a

Figure 6-14 Results grouping_muench.xsl

0

50

100

150

200

250

300

350

400

100 200 400 800 1600 3200 6400 12800 25600

elements

t i
n

se
c

jd.xslt 1.5.5

Msxml 4.0

Saxon 6.5.3.

Saxon 7.9.1

Xalan-J 2.6.0

XT 20020426a

Figure 6-15 Results grouping_muench2.xsl

6.3.4 Prefer the direct addressing of nodes over indirectly addressing them

In order to process the data of an element node it has to be accessed. This is done by
addressing it with an XPath expression. XPath offers two ways to do that. One is the
directly addressing the node with its complete path, e.g. /Source/country/
continent_name. The other one is indirectly addressing it e.g. by using
//continent_name. This XPath expression looks for all the <continent_name>
elements within an XML file while the first one only looks exactly in the given path.

The stylesheet grouping_muench3.xsl replaces the direct addressing in the <xsl:key> tag:
<?xml version="1.0" encoding="ISO-8859-1"?>
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:output method="xml" indent="yes"/>

<xsl:key name="continent_key" match="//continent_name" use="."/>

<xsl:template match="/">
<continents>
 <xsl:for-each select="/Source/country/continent_name[generate-
 id(.)=generate-id(key('continent_key',.))]">
 <xsl:variable name="cont_name" select="."/>
 <continent>
 <xsl:copy-of select="$cont_name"/>
 <country>
 <xsl:for-each select="key('continent_key',.)">
 <xsl:copy-of select="../country_name"/>
 </xsl:for-each>
 </country>
 </continent>
 </xsl:for-each>
</continents>
</xsl:template>

6. Improving XSLT performance

 53

</xsl:stylesheet>

In addition the stylesheet grouping_muench4.xsl replaces the direct addressing in the for-each-
loop:
<?xml version="1.0" encoding="ISO-8859-1"?>
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:output method="xml" indent="yes"/>

<xsl:key name="continent_key" match="//continent_name" use="."/>

<xsl:template match="/">
<continents>
 <xsl:for-each select="//continent_name[generate-id(.)=generate-
 id(key('continent_key',.))]">
 <xsl:variable name="cont_name" select="."/>
 <continent>
 <xsl:copy-of select="$cont_name"/>
 <country>
 <xsl:for-each select="key('continent_key',.)">
 <xsl:copy-of select="../country_name"/>
 </xsl:for-each>
 </country>
 </continent>
 </xsl:for-each>
</continents>
</xsl:template>

</xsl:stylesheet>

The performance of the two modified scripts is shown in Figure 6-16 and Figure 6-17:

0

50

100

150

200

250

300

350

400

100 200 400 800 1600 3200 6400 12800 25600

elements

t i
n

se
c

jd.xslt 1.5.5

Msxml 4.0

Saxon 6.5.3.

Saxon 7.9.1

Xalan-J 2.6.0

XT 20020426a

Figure 6-16 Results grouping_muench3.xsl

0

50

100

150

200

250

300

350

400

100 200 400 800 1600 3200 6400 12800 25600

elements

t i
n

se
c

jd.xslt 1.5.5

Msxml 4.0

Saxon 6.5.3.

Saxon 7.9.1

Xalan-J 2.6.0

XT 20020426a

Figure 6-17 Results grouping_muench4.xsl

The impact of both modifications is very little. For this example the usage of directly
addressing the nodes has hardly performance benefits. However, with different input data

6.3 Modifications of XSLT stylesheets

 54

this could be different. It is important to notice that dependent on the input document
indirectly addressing nodes is more flexible and selects more elements. Hence it could
produce a different result than the direct addressing.

Sometimes the XSLT developers need the flexibility of indirectly addressing nodes. Its usage
also simplifies the stylesheets. If performance is not critical the advantage of higher
readability makes up disadvantages of the transformation speed.

6.3.5 Effects of comments

Comments are important for XSLT developers to increase the readability of the code. The
question is whether the usage of comments impacts the transformation time.

For the test every second line of the input file from the transformation in Section 6.2.2 is
enhanced with comments. This triples the file size while the structure of the document stays
the same. The results of the tests are shown in Figure 6-18 and Figure 6-19:

0

2

4

6

8

10

12

1000 2000 4000 8000 16000 32000 64000 128000 256000

elements

t i
n

se
c

jd.xslt 1.5.5

Msxml 4.0

Saxon 6.5.3.

Saxon 7.9.1

Xalan-J 2.6.0

XT 20020426a

Figure 6-18 Results elementcontent_comment.xsl

0

1

2

3

4

5

6

7

1000 2000 4000 8000 16000 32000 64000 128000 256000

elements

t i
n

se
c

jd.xslt 1.5.5

Msxml 4.0

Saxon 6.5.3.

Saxon 7.9.1

Xalan-J 2.6.0

XT 20020426a

Figure 6-19 Results elementcontent.xsl

Obviously extensive usage of comments has a negative effect on the performance of the XSL
transformation. Developers have to find a compromise between good readability and
maximized performance.

6.3.6 Split up complex transformations into several stages

In order to reduce the complexity of a transformation the split of this transformation into
several stages is an alternative. This idea is also implemented in Clio. The transformation
process is divided into two stages because of performance benefits.

One downside of this approach is saving and multiply parsing the generated intermediate
results. If possible, the intermediate results should be kept in memory and the
transformation should be pipelined – the output of one transformation is the direct input of
the next transformation.

6. Improving XSLT performance

 55

6.3.7 Usage of the JAXP API

When transforming many source documents, especially if they use the same stylesheet, it is a
good idea to control the process using the JAXP API rather than writing a script that runs
each transformation from the command line. The initialisation time for getting the Java VM
running and loading all the classes can dominate the actual stylesheet execution cost.

6.4 Modifications of XSLT processor

For the implementers of XSLT processors there are various ways to improve performance.
Huge differences of the processing time throughout many tests in this paper made obvious
that most of the processors still have a high potential for optimizations. Some ideas5 for
improvements are listed here:

• parse the XSLT stylesheet just once / compile it and then use it multiple times if
working with document collections

• when producing multiple output files keep the input file in memory for the next
transformation

• keep the XSLT processor and the JVM loaded in memory between runs

• avoid executing the same transformations multiple times – instead store the result

• validate every source document only once

• use a faster XML parser to parse input document and XSLT stylesheet

• consider performing transformation on the client side

The ultimate goal is a behavior similar to database system optimizers. Their task is to find
the fastest way to execute a database operation. The XSLT optimizers have to execute XSLT
code in the fastest possible way. The XSLT developer would not have to worry about
different ways of coding XSLT to realize the intended functionality. The XSLT processor
would internally pick the fastest implementation.

6.5 DataPower Hardware XSLT processor

DataPower, the developer of the XSLTMark, takes a different approach to speed up XSLT
transformations. They implement an XSLT engine into a hardware device. The XA 35
XML Accelerator compiles the operations described in a stylesheet directly into CPU
instructions. This machine code can be executed about ten times faster than software
approaches [xa35]. Figure 7-18 shows a comparison of the XA35 with software XSLT
processors:

5 partly derived from [dpaw]

6.5 DataPower Hardware XSLT processor

 56

Figure 6-20 DataPower Benchmark Results of XA35 [xa35]

The XA 35 supports the Java API for XML Processing (JAXP). The application server can
send requests for processing to the XA 35 using this API. Hence the hardware XSLT engine
can easily be integrated into existing applications.

7 Conclusion and Outlook

The evaluation of XSLT performance is based on the results from the various comparison
test scenarios ran on the three major factors: XSLT processor, stylesheet, and input data.
The results help to interpret the relationship between the three factors and how they
interactively affect the transformation speed.

The benchmark tests showed that mostly the sequence of the best performing XSLT
processors is the same. However, for some cases, differences between two stylesheets only
became obvious for some XSLT processors. When performing XSLT benchmark tests it is
important to keep all impacting factors in mind.

With the support of XSLT benchmark software like the Sarvega Benchmark or CatchXSL
developers can test their own scripts and see how they can improve the performance of their
own XSL transformations. If performance is a crucial factor for a transformation it is a good
idea to run it with real data.

The presented ideas provide a reference for developers to improve XSLT performance. The
test variations covered throughout the paper are a subset of possible transformations. More
simulation models can be developed and executed to get a wider coverage and obtain a more
detailed overview of XSLT performance improvements.

Apart from that the improvements of XSLT processors could be investigated in further detail
according to the suggestions made in Section 6.4. The tests already showed that there is still a
lot of potential to improve the performance of the XSLT processors. The implementers
could take suggestions into consideration for their development work.

8. Bibliography

 57

8 Bibliography

[GR02] John R. Gardner; Zarella L. Rendon: XSLT & XPATH – A Guide to XML
Transformations. Prentice Hall, Upper Saddle River, NJ, 2002.

[CCD01] Kurt Cagle; Michael Corning; Jason Diamond; Teun Duynstee; Oli G.
Gudmundsson; Michael Mason; Jonathan Pinnock; Paul Spencer; Jeff Tang;
Andrew Watt; Jirka Jirat; Paul Tchistopolskii, Jeni Tennison: Professional XSL.
Wrox Press, Birmingham, 2001.

[Man03] Sal Mangano: XSLT Cookbook. O’Reilly, Sebastopol, CA, 2003.

[Kay00] Michael Kay: XSLT Programmer’s Reference. Wrox Press, Birmingham, 2000.

[Ten00] Jenni Tennison: Beginning XSLT, Wrox Press, Birmingham, 2000.

[4xsl] 4suite.org

[alto] www.altova.com/resources_xsltengine.html

[ecub] www.ecube.de

[exsl] www.exslt.org/

[dpaw] www.dpawson.co.uk/xsl/sect4/N9883.html#d11386e254

[catx] www.xslprofiler.org/overview.html

[jdxs] www.aztecrider.com/xslt

[jten] www.jenitennison.com/xslt/performance.html

[fast] www.geocities.com/fastxml

[libx] xmlsoft.org/XSLT

[lxsl] www.alphaworks.ibm.com/tech/LotusXSL

[mgrp] www.jenitennison.com/xslt/grouping/muenchian.html

[msxm] msdn.microsoft.com

[mulb] lists.mulberrytech.com/xsl-list

[oxdk] otn.oracle.com/tech/xml

[sabl] www.gingerall.com

[sard] www.sarvega.com/xslt-benchmark.php

[sarp] www.sarvega.com/product-literature.php?xslt=1

[sarv] www.sarvega.com

[saxn] saxon.sourceforge.net

[shap] www.navdeeps.com/shakespeare

[toxg] www.cs.toronto.edu/tox/toxgene

6.5 DataPower Hardware XSLT processor

 58

[toxx] www.cs.toronto.edu/tox

[trad] www.uspto.gov/web/offices/ac/ido/oeip/sgml/st32/trademark/

 TDXFDTDs.html

[xa35] www.datapower.com/products/xa35

[xalc] xml.apache.org/xalan-c

[xalj] xml.apache.org/xalan-j

[xalm] www.geocities.com/jbenhill/xalam.html

[xmar] www.datapower.com/xmldev/xsltmark.html

[xmlb] xmlbench.sourceforge.net

[xmlt] xmlxslt.sourceforge.net

[xt] www.blnz.com/xt

[ANZ01] Aboulnaga, Ashraf; Naughton, Jeffrey F.; Zhang, Chun. Generating synthetic
complex-structured XML data. In Proceedings of the Fourth International Workshop on
the Web and Databases, pages 79–84, Santa Barbara, CA, USA, 2001

[BMK02] Barbosa, Denilson; Mendelzon, Alberto O.; Keenleyside, John; Lyons, Kelly.
ToXgene: An extensible template-based data generator for XML, In SIGMOD
Conference, 2002

[HMH01] Hernández, Mauricio A.; Miller, Renee J.; Haas, Laura M.; Yan, Lingling; Ho,
Howard C. T.; Tian, Xuqing. Clio: A Semi-Automatic Tool For Schema
Mapping, In Proceedings of the ACM SIGMOD Conference, 2001

[MHH00] Miller, Renee J.; Haas, Laura M.; Hernández, Mauricio A. Schema Mapping as
Query Discovery, In VLDB 2000, Cairo, Egypt 2000

[MHH01] Miller, Renee J.; Hernández, Mauricio A.; Haas, Laura M.; Yan, Lingling; Ho,
Howard C. T.; Fagin, Ronald; Popa, Lucian. The Clio Project: Managing
Heterogeneity, In ACM SIGMOD Record, 2001

[NHT01] Naumann, Felix; Ho, Howard C. T.; Tian, Xuqing; Haas, Laura M.; Megiddo,
Nimrod. Attribute Classification Using Feature Analysis, 2001

[PHV02] Popa, Lucian; Hernández, Mauricio A.; Velegrakis, Yannis; Miller, Renee J.;
Naumann, Felix; Ho, Howard C. T. Mapping XML and Relational Schemas with
Clio, 2002

[SWK01] Schmidt, Albrecht; Waas, Florian; Kersten, Martin; Carey, Michael; Manolescu,
Iona; Busse, Ralph. The XML Benchmark project, In CWI, 2001

[SWK02] Schmidt, Albrecht; Waas, Florian; Kersten, Martin; Carey, Michael; Manolescu,
Iona; Busse, Ralph. XMark – A Benchmark for XML Data Management, 2002

[YMH01] Yan, Lingling; Miller, Renee J.; Haas, Laura M.; Fagin, Ronald. Data-Driven
Understanding and Refinement of Schema Mappings, 2001

9. Appendix –Test Results

 59

9 Appendix –Test Results

This section contains detailed test results. The tests were executed with jd.xslt 1.5.5, Msxml
4.0, Saxon 6.5.3, Saxon 7.9.1, Xalan-J 2.6.0 and XT 20020426a.

9.1 Clio Results

9.1.1 Transformation attributes to elements

Stylesheet: a2e1.xsl

elements jd.xslt Msxml Saxon 6 Saxon 7 Xalan-J XT

1,000 0.018 0.012 0.04 0.042 0.056 0.018

2,000 0.038 0.026 0.082 0.0822 0.1022 0.034

4,000 0.0842 0.048 0.1722 0.1724 0.2182 0.074

8,000 0.1762 0.0982 0.3546 0.3486 0.4926 0.1502

16,000 0.3566 0.2022 0.683 0.711 1.2018 0.2964

Stylesheet: a2e2.xsl

elements jd.xslt Msxml Saxon 6 Saxon 7 Xalan-J XT

1,000 0.0342 0.028 0.07 0.0722 0.088 0.036

2,000 0.0782 0.06 0.1662 0.1502 0.1862 0.078

4,000 0.1622 0.118 0.4548 0.3424 0.3864 0.1762

8,000 0.3424 0.2402 1.386 0.9172 0.8512 0.3444

16,000 0.677 0.4928 4.6026 2.764 1.9928 0.681

Stylesheet: a2emu1.xsl

elements jd.xslt Msxml Saxon 6 Saxon 7 Xalan-J XT

1,000 0.02 0.014 0.0462 0.044 0.058 0.022

2,000 0.04 0.028 0.0922 0.0902 0.1162 0.0402

4,000 0.0922 0.056 0.1802 0.1842 0.2384 0.0862

8,000 0.1862 0.106 0.3506 0.3664 0.579 0.1682

16,000 0.3846 0.2184 0.7652 0.7612 1.258 0.3284

9.1 Clio Results

 60

Stylesheet: a2emu2.xsl

elements jd.xslt Msxml Saxon 6 Saxon 7 Xalan-J XT

1,000 0.0642 0.052 0.1102 0.1242 0.1924 0.0682

2,000 0.1462 0.104 0.2404 0.2464 0.3826 0.1542

4,000 0.2904 0.2122 0.5988 0.5528 0.7732 0.2904

8,000 0.5708 0.4446 1.6924 1.3158 1.6202 0.6308

16,000 1.1716 0.9432 5.1474 3.5052 3.527 1.1838

9.1.2 Transformation elements to attributes

Stylesheet: e2a1.xsl

elements jd.xslt Msxml Saxon 6 Saxon 7 Xalan-J XT

1,000 0.0182 0.014 0.038 0.0382 0.05 0.018

2,000 0.038 0.028 0.0742 0.082 0.1042 0.036

4,000 0.0782 0.0502 0.1522 0.1602 0.2024 0.0782

8,000 0.1636 0.1022 0.3006 0.327 0.4103 0.15

16,000 0.3455 0.2104 0.5905 0.611 0.8315 0.3005

Stylesheet: e2a2.xsl

elements jd.xslt Msxml Saxon 6 Saxon 7 Xalan-J XT

1,000 0.03 0.022 0.0522 0.062 0.0982 0.034

2,000 0.0682 0.0440 0.114 0.1282 0.2124 0.0682

4,000 0.1262 0.0902 0.2744 0.2864 0.4386 0.1482

8,000 0.2804 0.1824 0.713 0.687 1.0636 0.2884

16,000 0.5573 0.377 2.043 2.043 3.061 0.5543

Stylesheet: e2amu1.xsl

elements jd.xslt Msxml Saxon 6 Saxon 7 Xalan-J XT

1,000 0.022 0.014 0.044 0.0462 0.056 0.02

2,000 0.0482 0.026 0.08 0.0822 0.1062 0.04

4,000 0.09 0.054 0.1622 0.1702 0.2164 0.086

8,000 0.1844 0.1102 0.3324 0.3324 0.4346 0.1782

16,000 0.3926 0.2242 0.6370 0.707 0.8872 0.3346

9. Appendix –Test Results

 61

Stylesheet: e2amu2.xsl

elements jd.xslt Msxml Saxon 6 Saxon 7 Xalan-J XT

1,000 0.052 0.042 0.0942 0.102 0.2064 0.0622

2,000 0.1082 0.0862 0.1862 0.2064 0.4646 0.1322

4,000 0.2222 0.1702 0.4748 0.4346 0.8552 0.2502

8,000 0.4406 0.3524 0.9654 0.9834 1.9168 0.4788

16,000 0.9194 0.713 2.4634 2.5476 4.825 0.9654

9.1.3 Flat hierarchy to flat hierarchy

Stylesheet: f2f1.xsl

elements jd.xslt Msxml Saxon 6 Saxon 7 Xalan-J XT

100 0.0082 0.002 0.014 0.014 0.0182 0.008

200 0.0122 0.008 0.0362 0.028 0.0382 0.012

400 0.0162 0.0162 0.0382 0.036 0.048 0.018

800 0.03 0.0202 0.072 0.074 0.0962 0.032

1,600 0.072 0.0422 0.1362 0.1682 0.1862 0.066

Stylesheet: f2f2.xsl

elements jd.xslt Msxml Saxon 6 Saxon 7 Xalan-J XT

100 0.016 0.004 0.0282 0.03 0.04 0.018

200 0.02 0.012 0.034 0.046 0.0502 0.0182

400 0.022 0.0202 0.0462 0.046 0.056 0.022

800 0.048 0.0322 0.072 0.0802 0.0942 0.038

1,600 0.0882 0.066 0.1642 0.1722 0.1902 0.0862

Stylesheet: f2fmu1.xsl

elements jd.xslt Msxml Saxon 6 Saxon 7 Xalan-J XT

1,000 0.01 0.002 0.016 0.016 0.02 0.0102

2,000 0.01 0.008 0.0262 0.026 0.0342 0.01

4,000 0.018 0.014 0.036 0.0382 0.05 0.018

8,000 0.038 0.024 0.0722 0.0762 0.0942 0.034

16,000 0.0782 0.042 0.1402 0.1582 0.1882 0.074

9.1 Clio Results

 62

Stylesheet: f2fmu2.xsl

elements jd.xslt Msxml Saxon 6 Saxon 7 Xalan-J XT

1,000 0.018 0.006 0.0382 0.04 0.0582 0.018

2,000 0.024 0.016 0.04 0.048 0.0662 0.024

4,000 0.036 0.024 0.0442 0.05 0.0782 0.03

8,000 0.0682 0.046 0.0882 0.088 0.1402 0.066

16,000 0.1362 0.0882 0.2042 0.1642 0.2564 0.1262

9.1.4 Flat hierarchy to nested hierarchy

Two levels of nesting

Stylesheet: f2n2l1.xsl

elements jd.xslt Msxml Saxon 6 Saxon 7 Xalan-J XT

100 0.07 0.03 0.15 0.16 0.301 0.09

200 0.23 0.13 0.521 0.561 1.112 0.33

400 0.782 0.531 2.003 2.093 4.286 1.242

800 3.015 2.043 7.801 7.992 17.185 4.756

1,600 13.339 8.192 30.764 32.206 69.069 18.546

Stylesheet: f2n2l2.xsl

elements jd.xslt Msxml Saxon 6 Saxon 7 Xalan-J XT

3,254 0.061 0.03 0.071 0.08 0.15 0.04

11,394 0.15 0.09 0.2 0.211 0.42 0.18

46,162 0.58 0.391 0.801 0.61 1.773 0.531

179,382 2.283 1.642 3.966 2.213 12.087 2.144

719,798 10.215 9.063 23.584 8.252 143.636 9.254

Stylesheet: f2n2lmu1.xsl

elements jd.xslt Msxml Saxon 6 Saxon 7 Xalan-J XT

100 0.008 0.0022 0.018 0.0222 0.026 0.01

200 0.018 0.01 0.034 0.038 0.0502 0.0162

400 0.028 0.018 0.06 0.0702 0.086 0.0242

800 0.058 0.026 0.1222 0.1422 0.1722 0.052

1,600 0.1262 0.0562 0.2422 0.2864 0.3504 0.1062

9. Appendix –Test Results

 63

Stylesheet: f2n2lmu2.xsl

elements jd.xslt Msxml Saxon 6 Saxon 7 Xalan-J XT

300 0.026 0.018 0.032 0.034 0.08 0.028

600 0.058 0.0342 0.06 0.0662 0.1502 0.056

1,200 0.1262 0.0662 0.1302 0.1262 0.2924 0.1202

2,400 0.3164 0.1422 0.2844 0.2624 0.585 0.2284

4,800 0.8492 0.2924 0.709 0.5968 1.1438 0.4586

Three levels of nesting

Stylesheet: f2n3l1.xsl

elements jd.xslt Msxml Saxon 6 Saxon 7 Xalan-J XT

100 1.472 1.011 3.315 3.405 8.503 2.314

200 11.587 7.791 25.757 26.548 65.053 17.455

400 98.742 63.281 209.011 219.505 528.11 146.901

Stylesheet: f2n3l2.xsl

elements jd.xslt Msxml Saxon 6 Saxon 7 Xalan-J XT

24,726 0.541 0.32 1.743 0.46 1.392 0.461

187,314 4.366 2.413 38.135 3.095 18.296 2.944

Stylesheet: f2n3lmu1.xsl

elements jd.xslt Msxml Saxon 6 Saxon 7 Xalan-J XT

100 0.014 0.004 0.024 0.0322 0.04 0.012

200 0.026 0.014 0.05 0.064 0.0802 0.024

400 0.0482 0.024 0.0882 0.1102 0.1482 0.042

Stylesheet: f2n3lmu2.xsl

elements jd.xslt Msxml Saxon 6 Saxon 7 Xalan-J XT

400 0.0702 0.0402 0.0782 0.0802 0.2744 0.0842

800 0.1542 0.086 0.1582 0.1602 0.5228 0.1764

1,600 0.3164 0.1882 0.3166 0.3164 1.0134 0.3464

9.1 Clio Results

 64

9.1.5 Nested hierarchy to flat hierarchy

Stylesheet: n2f1.xsl

elements jd.xslt Msxml Saxon 6 Saxon 7 Xalan-J XT

100 0.008 0.004 0.016 0.018 0.022 0.006

200 0.012 0.012 0.034 0.028 0.038 0.014

400 0.024 0.018 0.0442 0.0422 0.058 0.02

800 0.046 0.028 0.0842 0.0862 0.1142 0.046

1,600 0.0962 0.06 0.1762 0.1702 0.2322 0.0942

Stylesheet: n2f2.xsl

elements jd.xslt Msxml Saxon 6 Saxon 7 Xalan-J XT

100 0.016 0.004 0.026 0.0342 0.04 0.0142

200 0.02 0.012 0.034 0.046 0.048 0.018

400 0.022 0.02 0.0402 0.042 0.056 0.022

800 0.05 0.03 0.074 0.076 0.1022 0.04

1,600 0.0902 0.062 0.1662 0.1744 0.1982 0.0842

Stylesheet: n2fmu1.xsl

elements jd.xslt Msxml Saxon 6 Saxon 7 Xalan-J XT

100 0.01 0.004 0.018 0.018 0.024 0.008

200 0.012 0.01 0.024 0.024 0.0342 0.012

400 0.024 0.018 0.044 0.0462 0.0662 0.022

800 0.048 0.032 0.086 0.09 0.1242 0.044

1,600 0.1062 0.062 0.1764 0.1762 0.2464 0.0962

Stylesheet: n2fmu2.xsl

elements jd.xslt Msxml Saxon 6 Saxon 7 Xalan-J XT

100 0.0182 0.006 0.0402 0.042 0.054 0.02

200 0.024 0.016 0.04 0.0502 0.066 0.024

400 0.034 0.0262 0.0462 0.0502 0.0822 0.032

800 0.0662 0.0442 0.0862 0.0902 0.1342 0.064

1,600 0.1362 0.088 0.2022 0.1642 0.2524 0.1262

9. Appendix –Test Results

 65

9.1.6 Nested hierarchy to nested hierarchy

Stylesheet: n2n1.xsl

elements jd.xslt Msxml Saxon 6 Saxon 7 Xalan-J XT

100 3.045 3.174 6.97 5.758 16.323 4.326

200 21.842 28.04 58.754 46.517 133.692 35.801

400 163.725 201.78 440.634 346.549 1105.61 282.776

Stylesheet: n2n2.xsl

elements jd.xslt Msxml Saxon 6 Saxon 7 Xalan-J XT

26,610 0.631 0.331 1.803 0.481 1.452 0.511

216,456 5.558 2.854 47.038 3.655 23.1133 4.166

1,611,298 102.798 56.021 n/a n/a n/a 49.752

Stylesheet: n2nmu1.xsl

elements jd.xslt Msxml Saxon 6 Saxon 7 Xalan-J XT

100 0.0133 0.0367 0.04 0.0533 0.0167 0.01

200 0.0267 0.05033 0.06 0.0833 0.0267 0.02

400 0.0567 0.1 0.1167 0.1603 0.0467 0.027

800 0.117 0.1937 0.2337 0.334 0.1033 0.0537

1,600 0.2403 0.4007 0.4707 0.671 0.1937 0.1067

Stylesheet: n2nmu2.xsl

elements jd.xslt Msxml Saxon 6 Saxon 7 Xalan-J XT

600 0.0702 0.0402 0.0842 0.084 0.2764 0.084

1,200 0.1522 0.086 0.1562 0.1624 0.5168 0.1742

2,400 0.3084 0.1842 0.3226 0.3124 1.0074 0.3484

4,800 0.6488 0.3706 0.697 0.6488 1.985 0.6608

9,600 1.464 0.7592 1.6524 1.4782 3.9478 1.3238

9.2 Performance Improvement Results

 66

9.2 Performance Improvement Results

9.2.1 Splitting up big input files

Stylesheet: e2a1.xsl

file jd.xslt Msxml Saxon 6 Saxon 7 Xalan-J XT

elements1.xml 0.383 0.234 0.659 0.683 0.913 0.334

elements2.xml 0.621 0.391 1.130 1.248 1.606 0.587

elements3.xml 0.627 0.395 1.202 1.244 1.584 0.589

elements4.xml 0.691 0.451 1.268 1.404 1.756 0.649

elements5.xml 0.505 0.308 0.867 0.915 1.210 0.441

elements6.xml 0.603 0.377 1.082 1.134 1.534 0.561

elements7.xml 0.799 0.521 1.436 1.550 2.069 0.753

elements8.xml 0.557 0.339 1.036 1.029 1.366 0.489

elements9.xml 0.388 0.250 0.713 0.779 0.995 0.358

elements10.xml 0.186 0.118 0.342 0.379 0.465 0.182

Sum of files 5.359 3.383 9.734 10.365 13.500 4.943

complete.xml 6.8658 3.8354 9.9344 9.9264 16.043 4.9692

Stylesheet: e2a2.xsl

file jd.xslt Msxml Saxon 6 Saxon 7 Xalan-J XT

intermediate1.xml 0.708 0.437 2.534 2.480 3.872 0.638
intermediate 2.xml 1.135 0.751 5.889 5.872 9.891 1.115
intermediate 3.xml 1.122 0.758 6.029 5.561 10.368 1.115
intermediate 4.xml 1.299 0.875 7.411 7.110 12.568 1.222
intermediate 5.xml 0.868 0.584 3.929 3.886 6.389 0.911
intermediate 6.xml 1.072 0.728 5.638 5.338 9.584 1.111
intermediate 7.xml 1.455 1.041 9.427 8.853 17.315 1.425
intermediate 8.xml 1.031 0.651 4.737 4.513 7.591 0.975
intermediate 9.xml 0.754 0.471 2.731 2.691 4.456 0.691
intermediate 10.xml 0.351 0.217 0.915 0.875 1.369 0.347

Sum of files 9.794 6.512 49.238 47.178 83.403 9.551
complete.xml 12.077 8.062 349.783 317.547 706.886 10.175

9. Appendix –Test Results

 67

9.2.2 Using attributes instead of elements

Stylesheet: elementcontent.xsl

elements jd.xslt Msxml Saxon 6 Saxon 7 Xalan-J XT

1,000 0.012 0.008 0.016 0.020 0.020 0.012

2,000 0.028 0.020 0.028 0.036 0.038 0.022

4,000 0.048 0.032 0.052 0.066 0.072 0.048

8,000 0.094 0.070 0.102 0.136 0.140 0.098

16,000 0.208 0.134 0.216 0.270 0.286 0.196

32,000 0.445 0.278 0.413 0.569 0.581 0.405

64,000 0.885 0.584 0.858 1.112 1.238 0.785

128,000 1.772 1.178 1.829 2.270 2.741 1.729

256,000 3.385 2.584 3.480 4.552 6.625 3.275

Stylesheet: attributecontent.xml

elements jd.xslt Msxml Saxon 6 Saxon 7 Xalan-J XT

1,000 0.014 0.014 0.014 0.018 0.024 0.01

2,000 0.022 0.028 0.0282 0.0362 0.0422 0.022

4,000 0.05 0.0402 0.052 0.074 0.0922 0.046

8,000 0.0982 0.0802 0.1022 0.1564 0.2264 0.0942

16,000 0.2262 0.1602 0.2162 0.3206 0.671 0.1942

32,000 0.4846 0.3324 0.4486 0.635 2.6056 0.4106

64,000 0.9552 0.701 0.8892 1.346 10.7174 0.8172

128,000 2.0168 1.5362 1.8206 2.6798 45.4054 1.6926

256,000 4.0938 3.531 3.6894 5.4218 178.082 3.5792

9.2.3 Keep names for elements short

Stylesheet: grouping_muench.xsl

elements jd.xslt Msxml Saxon 6 Saxon 7 Xalan-J XT

100 0.01 0.0022 0.02 0.0262 0.034 0.008

200 0.016 0.008 0.024 0.042 0.04 0.018

400 0.016 0.014 0.024 0.0722 0.044 0.016

800 0.034 0.02 0.048 0.2644 0.086 0.032

1,600 0.0782 0.04 0.1082 1.0776 0.1744 0.0702

9.2 Performance Improvement Results

 68

3,200 0.2142 0.0862 0.2824 4.5286 0.3346 0.1522

6,400 0.7992 0.1982 0.8132 19.4378 0.689 0.2924

12,800 4.051 0.5105 2.609 82.058 1.392 0.551

25,600 17.675 3.586 9.213 362 2.815 1.122

Stylesheet: grouping_muench_long.xsl

elements jd.xslt Msxml Saxon 6 Saxon 7 Xalan-J XT

100 0.01 0.0022 0.02 0.0262 0.034 0.008

200 0.016 0.008 0.024 0.042 0.04 0.018

400 0.016 0.014 0.024 0.0722 0.044 0.016

800 0.034 0.02 0.048 0.2644 0.086 0.032

1,600 0.0782 0.04 0.1082 1.0776 0.1744 0.0702

3,200 0.2142 0.0862 0.2824 4.5286 0.3346 0.1522

6,400 0.7992 0.1982 0.8132 19.4378 0.689 0.2924

12,800 4.051 0.5105 2.609 82.058 1.392 0.551

25,600 17.675 3.586 9.213 362 2.815 1.122

9.2.4 Prefer “pattern matching” and “selecting” over “filtering”

Stylesheet: country_filtering.xsl

elements jd.xslt Msxml Saxon 6 Saxon 7 Xalan-J XT

1,000 0.0122 0.014 0.014 0.016 0.026 0.01
2,000 0.028 0.024 0.028 0.0342 0.044 0.0262
4,000 0.056 0.042 0.052 0.066 0.084 0.05
8,000 0.11 0.0842 0.1022 0.1302 0.1662 0.1002
16,000 0.2364 0.1742 0.2202 0.2564 0.3364 0.2122
32,000 0.5086 0.3584 0.4626 0.5348 0.661 0.4426
64,000 0.9894 0.751 0.9072 1.0896 1.362 0.8892
128,000 2.0448 1.6264 1.9548 2.1652 2.758 1.8586
256,000 4.238 3.7634 3.8396 4.6106 5.8264 3.7534

9. Appendix –Test Results

 69

Stylesheet: country_matching.xsl

elements jd.xslt Msxml Saxon 6 Saxon 7 Xalan-J XT

1,000 0.012 0.012 0.018 0.018 0.03 0.014

2,000 0.028 0.0242 0.03 0.0362 0.0522 0.0262

4,000 0.0522 0.046 0.058 0.072 0.1082 0.052

8,000 0.1082 0.0902 0.1162 0.1462 0.2164 0.126

16,000 0.2464 0.1782 0.2464 0.2944 0.4246 0.2324

32,000 0.5106 0.3726 0.5168 0.6128 0.8532 0.4868

64,000 0.9974 0.7712 0.9936 1.2798 1.7586 1.0036

128,000 2.077 1.6704 2.103 2.5216 3.499 2.031

256,000 4.2662 3.8054 4.104 5.0752 7.1702 4.0058

Stylesheet: country_selecting.xsl

elements jd.xslt Msxml Saxon 6 Saxon 7 Xalan-J XT

1,000 0.012 0.012 0.016 0.02 0.026 0.0102

2,000 0.026 0.026 0.028 0.034 0.046 0.024

4,000 0.048 0.0422 0.052 0.064 0.084 0.0462

8,000 0.1042 0.086 0.1022 0.1302 0.1702 0.1002

16,000 0.2364 0.1744 0.2242 0.2604 0.3424 0.2084

32,000 0.4888 0.3606 0.4586 0.5408 0.675 0.4366

64,000 0.9494 0.753 0.8912 1.0914 1.37 0.8834

128,000 2.025 1.6342 1.959 2.2232 2.73 1.9448

256,000 4.194 3.7352 3.8034 4.6366 5.9284 3.545

9.2.5 Use the Muenchian method for grouping

Stylesheet: grouping_normal.xsl

elements jd.xslt Msxml Saxon 6 Saxon 7 Xalan-J XT

100 0.012 0.002 0.022 0.018 0.048 0.014

200 0.028 0.004 0.054 0.0262 0.1182 0.032

400 0.078 0.014 0.1464 0.024 0.4306 0.084

800 0.2924 0.018 0.5348 0.05 1.5342 0.2984

1,600 1.0736 0.032 2.141 0.0962 6.2008 1.0996

3,200 5.0972 0.064 8.5404 0.1924 25.8432 5.506

9.2 Performance Improvement Results

 70

6,400 22.5484 0.1842 33.9268 0.3846 108.47 26.8968

12,800 95.5925 0.2905 134.8385 0.741 462.41 120.308

25,600 407.626 0.55 544.753 1.522 2197.71 553.906

9.2.6 Usage of keys

Stylesheet: grouping_muench2.xsl

elements jd.xslt Msxml Saxon 6 Saxon 7 Xalan-J XT

100 0.01 0.012 0.018 0.026 0.034 0.0102

200 0.016 0.0062 0.024 0.042 0.0402 0.018

400 0.012 0.012 0.0202 0.068 0.0362 0.012

800 0.0342 0.016 0.0402 0.2544 0.06 0.022

1,600 0.066 0.0342 0.0922 1.0676 0.1202 0.044

3,200 0.1964 0.074 0.2544 4.4404 0.2384 0.1

6,400 0.763 0.1802 0.7652 19.2178 0.4846 0.2084

12,800 3.8905 0.4805 2.4735 82.108 0.9965 0.3905

25,600 17.986 3.214 8.973 348.861 2.053 0.781

9.2.7 Prefer direct addressing nodes over indirect addressing

Stylesheet: grouping_muench3.xsl

elements jd.xslt Msxml Saxon 6 Saxon 7 Xalan-J XT

100 0.01 0.002 0.018 0.028 0.034 0.01

200 0.016 0.006 0.022 0.04 0.04 0.014

400 0.012 0.012 0.0202 0.0742 0.034 0.0122

800 0.0282 0.018 0.0422 0.2602 0.062 0.0202

1,600 0.0702 0.034 0.0962 1.0816 0.1202 0.046

3,200 0.1942 0.0742 0.2544 4.4182 0.2364 0.096

6,400 0.7752 0.1784 0.7772 19.2418 0.4808 0.2064

12,800 3.9055 0.481 2.5385 81.998 0.9815 0.3905

25,600 18.226 3.205 8.953 350.494 2.013 0.791

Stylesheet: grouping_muench4.xsl

elements jd.xslt Msxml Saxon 6 Saxon 7 Xalan-J XT

100 0.012 0.002 0.018 0.024 0.038 0.012

9. Appendix –Test Results

 71

200 0.014 0.006 0.024 0.042 0.0462 0.014

400 0.014 0.012 0.022 0.0682 0.034 0.012

800 0.0322 0.022 0.048 0.2582 0.0622 0.026

1,600 0.0742 0.036 0.1022 1.0554 0.1162 0.0522

3,200 0.2124 0.0762 0.2644 4.4224 0.2324 0.12

6,400 0.8152 0.1822 0.783 19.0916 0.4686 0.2382

12,800 3.991 0.496 2.559 81.9025 0.9665 0.4605

25,600 18.116 3.195 9.003 349.172 1.983 0.931

9.2.8 Effects of comments

Stylesheet: elementcontent_comment.xsl

elements jd.xslt Msxml Saxon 6 Saxon 7 Xalan-J XT

1,000 0.024 0.014 0.04 0.0302 0.0322 0.014

2,000 0.048 0.028 0.0762 0.056 0.062 0.0302

4,000 0.1002 0.056 0.1642 0.116 0.1202 0.058

8,000 0.2002 0.116 0.3304 0.2324 0.2384 0.1202

16,000 0.4286 0.2444 0.6388 0.4608 0.4788 0.2544

32,000 0.809 0.4928 1.296 0.9534 0.9874 0.5146

64,000 1.6344 1.0154 2.6258 1.9048 2.015 0.9954

128,000 3.3388 2.1352 5.0994 3.7794 4.268 2.0188

256,000 6.5834 4.9772 10.1866 8.2438 9.4134 4.3742

Stylesheet: elementcontent.xsl

elements jd.xslt Msxml Saxon 6 Saxon 7 Xalan-J XT

1,000 0.0122 0.0122 0.016 0.018 0.018 0.01

2,000 0.024 0.0222 0.026 0.036 0.038 0.0222

4,000 0.044 0.036 0.05 0.066 0.0682 0.0442

8,000 0.0902 0.0682 0.1002 0.1322 0.1362 0.0962

16,000 0.1984 0.1302 0.2082 0.2624 0.2764 0.1964

32,000 0.4306 0.2684 0.4146 0.5408 0.5608 0.3966

64,000 0.8112 0.5568 0.823 1.0716 1.1658 0.7952

128,000 1.6324 1.1576 1.7264 2.1732 2.6418 1.6422

256,000 3.3028 2.5218 3.367 4.3342 6.1248 2.9182

