
Bachelorarbeit
zum Erwerb des akademischen Abschlusses

Bachelor of Science in Business Informatics
zum Thema

Benchmarking the DB2 XML and Text
Extender

eingereicht an der Wirtschafts- und Sozialwissenschaftlichen
Fakultät der Universität Rostock

vorgelegt von: Tim F. Rieger
Matrikel-Nr.: 099202731
Studiengang: Business Informatics
Bearbeitungszeitraum: 3 Monate
Betreuer: Dr. Holger Meyer
2. Gutachter: Prof. Dr. Andreas Heuer
Lehrstuhl: Datenbank- und Informationssysteme

Bremen, den 04.10.2002

Contents

List of Abbreviations 3

1 Introduction 5

2 Particularities of XML Data 6

3 Evaluation of Current XML Benchmarks 8
3.1 Xmark . 10

3.1.1 Concept . 10
3.1.2 Benchmark Operations . 11
3.1.3 Implementation and Experiences 11
3.1.4 Rating of Benchmark . 11

3.2 XOO7 . 15
3.2.1 Concept . 15
3.2.2 Benchmark Operations . 15
3.2.3 Implementation and Experiences 17
3.2.4 Rating of Benchmark . 18

3.3 XMach-1 . 19
3.3.1 Concept . 19
3.3.2 Benchmark Operations . 20
3.3.3 Implementation and Experiences 22
3.3.4 Rating of Benchmark . 23

4 Benchmarking DB2 with XMach-1 24
4.1 The System under Test . 24
4.2 Management of XML Data with DB2 25
4.3 Problems with DB2’s XPath Implementation 26
4.4 Available XQuery Implementations 31

5 Conclusion and Outlook 32

2

List of Abbreviations

BAPCo - Business Application Performance Council

DBS - Database System

CLOB - Character Large Object

DBMS - Database Management System

DAD - Document Access Definition

DTD - Document Type Definition

HTTP - Hyper Text Transfer Protocol

LAN - Local Area Network

OO - object-oriented

OODBS - object-oriented database systems

OS - Operating System

PC - Personal Computer

RNG - Random Number Generator

RDBS - Relational Database System

SPEC - Standard Performance Evaluation Corporation

SUT - System under Test

TPC - Transaction Processing Performance Council

UDF - User Defined Function

W3C - World Wide Web Consortium

XMach-1 - XML Data Management benchmark, version 1

3

List of Abbreviations

Xmark - XML Benchmark

XML - Extensible Markup Language

XMLMS - XML Management System

Xqps - XML queries per second

4

1 Introduction

XML is a document definition language that is currently experiencing a boom.
Because of its self-describing nature, it is especially popular as a data exchange
format in web-environments. Applications of XML pop up everywhere and more
and more XML data is generated. This leads to the demand for efficient storage
means. About every database vendor has a product to satisfy this need.

In this thesis the difference between XML data and conventional relational data
is explained which is the reason why special management systems for XML are
needed. Then the necessity for XML benchmarks is explained and criteria for
judging benchmarks are introduced. Currently several different benchmarks
for XML database systems are under development. This thesis has a closer look
at three XML benchmarks and discusses their particularities and suitability for
benchmarking XML management systems. A report on the experiences made
when trying to use one of the benchmarks to test IBM’s Universal Database
DB2 complements this paper.

5

2 Particularities of XML Data

Basically only two categories of XML documents exist: data-centric and document-
centric ones. Data-centric documents hold all of their information in their tags.
Therefore these can easily be converted to conventional relational databases by
mapping their elements to attributes in tables. Examples of data-centric XML
documents are addressbooks, picture albums or music catalogs. The order in-
side these documents is unimportant. Document-centric XML files also carry
information in their structure; the order and nesting of elements is very im-
portant. It is difficult to map these documents to (object-) relational database
systems because simply copying the data is not enough. Examples of document-
centric XML documents are web-pages1 or XML based file formats like the ones
of the OpenOffice suite. Figure 2.1 illustrates the difference of data-centric and
document-centric XML documents with examples for a picture album and a file
format for word processors.

Figure 2.1: Examples of data-centric and document-centric XML files.

1HTML and XHTML have been defined in XML.

6

2 Particularities of XML Data

As different kinds of XML documents exist, also different approaches for XML
management systems (XMLMS) have emerged. Native XML database systems
take a straight-forward approach and do not try to convert the data into rela-
tional data. Instead they have their own method of storing XML files, so they do
not have a problem with document-centric XML documents. However they can-
not utilize conventional optimization techniques due to their different storage
method. XML-enabled or -aware database systems build up on top of a (object-
) relational database systems. They map XML data to their tables. Because
they can use their internal optimization, good results can be achieved when
querying data-centric XML data. However, these systems usually perform poor
when confronted with document-centric XML data as it is unknown to their
data model.

7

3 Evaluation of Current XML
Benchmarks

With the increasing amount of XML data being generated the necessity of ef-
ficient storage systems increases. More and more XML Management Systems
(XMLMS) are pushed into the market by various software companies. Also, a
lot of academic research is done on different ways to manage XML documents.

Benchmarks are the only means to measure the performance of these systems.
They help the developer to judge if the last change in source code resulted in
better performance or did the contrary. Customers can judge for themselves if
the XMLMS they are planning can stick up to their demands. By allowing direct
comparison between different systems, benchmarks induce constant improve-
ment of the available systems and competition between different developers for
the benefit of the customer.

However, since the design of the first benchmarks there has been argument
about their independence and relevance for practical use. Early benchmarks
lacked acceptance because they were tailored by vendors for their own machines
resp. software. Therefore neutral consortia1 were founded to develop standard
benchmarks, some of these are the Transaction Processing Performance Council
(TCP), the Standard Performance Evaluation Corporation (SPEC) or the Busi-
ness Application Performance Consortium (BAPCo).

A benchmark must be domain-specific to give relevant results. SPEC, for exam-
ple, develops benchmarks for the workstation domain whereas BAPCo defines
benchmarks for personal computers (PC) which simulate a typical office envi-
ronment. A university will not care about the BAPCo results when buying a
new mainframe, because that is not the domain in which the system will be
used. In his book [GRA], Gray has defined four criteria for domain-specific
benchmarks to be useful:

1. Relevance: It must measure the performance of typical operations for
the specific domain. Performance should be distinguished between peak
performance and the price/performance ratio.

1Of course, these were founded and are operated by vendors.

8

3 Evaluation of Current XML Benchmarks

2. Portability: Implementation should be possible on different systems and
architectures.

3. Scalability: The benchmark should be equally applicable to small and
large computer systems.

4. Simplicity: To be accepted, the benchmark needs to be comprehensible.

In the next sections three current XML benchmarks will be introduced. First
there will be an introduction on the idea behind the benchmark and its de-
velopers, followed by deeper look at the benchmarks structure and available
implementations. Each section will conclude with a look at experiences with
the concerning benchmark and a discussion of its correspondence with Gray’s
criteria.

It has become necessary to develop XML benchmarks because the established
benchmarks do not cover all of the features of XML or of its query language
proposals (e.g. document-centric data, implicit ordering of XML data, creation
of XML structures, . . .).

9

3 Evaluation of Current XML Benchmarks

3.1 Xmark

Xmark stands for “XML Benchmark” and has been developed at the CWI [SCH02b],
which is the Research Institute for Mathematics and Computer Science in the
Netherlands. The reason for its development was that none of the existing
benchmarks cover all of XML’s potential, as its authors Schmidt et al. believe.
The main sources of information on the benchmark were the publications by its
authors [SCH02a, SCH01a, SCH01b] and the project’s homepage [SCH02b].

3.1.1 Concept

The scenario that Xmark proposes models an Internet auction site. Still the
authors stress that by carefully selecting different their queries the benchmark
is not only relevant for XMLMS in this domain. The XML data on which the
benchmark works is contained in a single document. A tree representation of
most elements can be seen in figure 3.1. It is a straight-forward approach and
grasps all of the necessary entities one would expect for an auction site like
items to be sold, open and closed auctions, people (buyers and sellers), product
categories etc. The only unusual thing is probably their arrangement in a XML-
typical tree structure and not in an entity relationship model. As all of the data
will be contained in a single document, ’site’ will be the root element for the
whole database.

Figure 3.1: Element relationship between most elements of Xmark [SCH01b]

To generate realistic text for the database, Xmark uses the 17,000 most com-
mon words in the plays of Shakespeare. A document type definition (DTD) file

10

3 Evaluation of Current XML Benchmarks

is supplied for XMLMS that can utilize this information. In order to support
different database sizes, a scaling factor is introduced. A scaling factor of 1.0
will result in a database of 100 MB; factors of 0.1, 10 and 100 would result in a
file size of 10 MB, 1 GB and 10 GB respectively. Xmark neither measures the
time it takes the database to load the XML document nor does it consider data
manipulation operations. The chosen is metric milliseconds per query.

3.1.2 Benchmark Operations

The queries are formulated in XQuery [XQE]. Altogether there are 20 different
queries which the authors considered necessary to create a benchmark that is
relevant to many different fields of application. Tables 3.2 and 3.4 list all of the
queries along with comments on their intention.

3.1.3 Implementation and Experiences

By the time of writing, the data generation tool for the benchmark was available
on the benchmark’s homepage [SCH02c]. It is written in C, so it can be compiled
and used on every system with a C compiler. To make it platform-independent it
does not rely on supplied random number generators (RNG) but instead comes
with its own RNG routine. The queries are available for download, too, but they
are only useful if the tested system is already capable of executing XQuery code.
What is left to do, is writing the necessary routines to measure the execution
time of queries. Since these are different for every XMLMS, this will be left to
the benchmark user.

So far, Xmark has been used to benchmark Monet XML [MON] which is a re-
search DBS at the CWI.

3.1.4 Rating of Benchmark

Although it appears as if Xmark was only suitable to benchmark Internet auc-
tion sites, Schmidt et al. tried to achieve relevance for many domains by in-
cluding relatively many queries. The clear description of the queries targeted
features helps users to pick out the results which are important for their spe-
cific demands. People who use XML data in multi-user environments should
keep in mind that the benchmark only support single-user mode.

Portability is achieved by supplying C code that brings it out RNG and formu-
lating queries verbally and in XQuery which will probably become the standard
XML query language.

11

3 Evaluation of Current XML Benchmarks

ID Description Comment

Q1 Return the name of the person
with ID ’person0’ registered in North
America.

Checking ability to handle strings
with a fully specified path.

Q2 Return the initial increases of all open
auctions.

Evaluate cost of array lookups. Query
on the order of data. A relational
backend may have a problem deter-
mining the first element.

Q3 Return IDs of all open auctions. More complex evaluation of array
lookup.

Q4 List reserves of those open auctions
where a certain person issued a bid
before another person.

Querying tag values capturing docu-
ment orientation of XML.

Q5 How many sold items cost more than
40?

Check how well a DBMS performs
since XML model is document ori-
ented. Checks for typing in XML.

Q6 How many items are listed on all con-
tinents?

Test efficiency in handling path ex-
pressions.

Q7 How many pieces of prose are in our
database?

Query is answerable using cardinal-
ity of relations. Testing implementa-
tions.

Q8 List the names of persons and the
number of items they bought.

Check efficiency in processing
IDREF’s. (Note that a relational
system would handle this using
foreign keys.)

Q9 List the names of persons and the
names of items they bought in Eu-
rope. (Joins person, closed_auction
and item.)

Same as Q8.

Q10 List all persons according to their in-
terest. Use French markup in the re-
sult.

Grouping, restrcuturing and rewrit-
ing. Storage efficiency checked.

Table 3.2: Xmark query operations (Pt. 1) [BRE01c, SCH01b]

12

3 Evaluation of Current XML Benchmarks

ID Description Comment

Q11 For each person, list the number of
items for sale whose price does not ex-
ceed 0.02% of the person’s income.

Value based joins.

Q12 For a richer than average person, list
the number of items currently on sale
whose price does not exceed 0.02% of
the person’s income.

Same as above.

Q13 List names of items registered in Aus-
tralia along with their description.

Test ability of database to reconstruct
portions of XML documents.

Q14 Return the names of all items whose
description contains the word ’gold’.

Text search narrowed by combining
the query on content and structure.

Q15 Print the keyword in emphasis in an-
notations of closed auctions.

Attempt to quantify the cost of long
path traversals. Query checks for ex-
istence of path.

Q16 Return the IDs of those auctions that
have one or more keywords in empha-
sis.

Same as above.

Q17 Which persons do not have a home-
page?

Determine processing quality in pres-
ence of optional parameters.

Q18 Convert the currency of the reserve of
all open auctions to another currency.

Checks User Defined Functions
(UDF’s).

Q19 Give an alphabetically ordered list of
all items along with their location.

Query uses SORTBY, which might
lead to a SQL-ish ORDER BY and
GROUP BY because of lack of
schema. This query requires a sort on
generic data.

Q20 Group customers by their income and
output the cardinality of each group.

Computes a simple aggregation by
assigning each person to a category.
The aggregation is semistructured
because income information is not
mandatory.

Table 3.4: Xmark query operations (Pt. 2) [BRE01c, SCH01b]

13

3 Evaluation of Current XML Benchmarks

Due to the scaling factor, Xmark can create and benchmark databases of differ-
ent sizes. Hence it fulfills Gray’s scalability requirement.

Judging whether this benchmark is simple is not easy. On the one side it pos-
sesses 20 queries which not little but on the other side these queries are very
comprehensible due to the vividness of the scenario. Therefore it can be stated
that Xmark is simple enough for users who are acquainted with the matter.

Apart from the little flaw of the missing multi-user simulation which is impor-
tant to many users, the benchmark can very well be regarded as useful accord-
ing to Gray’s criteria.

14

3 Evaluation of Current XML Benchmarks

3.2 XOO7

This benchmark has been developed by researchers from the National Univer-
sity of Singapore and Arizona State University. It is based on the OO7 bench-
mark [CAR] because its developers believed that the XML data model has a lot
of similarity to the object-oriented model. The OO7 benchmark was developed
for benchmarking object-oriented databases (hence the “OO” in the name) sim-
ulating a technical documentation. Taking an already existing database bench-
mark was only a first step. Some adaptions had to be made to meet the demands
of an XML benchmark. Most of the information on XOO7 stems from the publi-
cations by its authors [BRE02, BRE01a, BRE01b, BRE01c, BRE01d, BRExxb]
and the project’s homepage [BRExxa].

3.2.1 Concept

Bressan et al. - the developers of XOO7 - are of the opinion that the object-
oriented model (OO-model) and XML have much similarity. Classes (or schemata)
and instances from the OO-model corresponded directly to DTD’s and XML data
in the XML model. Therefore it was decided to take a successful benchmark for
object-oriented database systems (OODBS) and adapt it, so that can be used
for XMLMS. The adaption was accomplished by mapping the OO7 schema and
instances onto a DTD and corresponding XML data sets.

Figure 3.2 illustrates the corresponding DTD. Other than XMach-1 that was
designed to model a multi-user web-environment, XOO7’s developers favor a
benchmark for comparing querying capabilities. Multi-user support is not re-
garded, instead the focus is on query processing power. Querying does not in-
clude data manipulation which means that XOO7 is not concerned with XML
data insertion, update or deletion. Besides the response time for queries, the
benchmark also regards the time it takes to load the benchmarks data sets and
the disk space they consume in the different XMLMS.

3.2.2 Benchmark Operations

The OO7 benchmark included eight queries. These were included in XOO7 and
complemented by five additional queries, as can be seen in figure 3.6. Group I
covers simple selection/projection queries. Queries in group II require explicit
order to generate results and group III needs joins to get ordered results. The
additional queries cover all three groups.

15

3 Evaluation of Current XML Benchmarks

ID Description

Group I
Q1 Randomly generate five numbers in the range of Atom-

icPart’s MyID. Then return the AtomicPart’s MyIDs ac-
cording to the five numbers.

Q4 Randomly generate five titles for Documents. Then re-
turn Document’s MyIDs by lookup on these titles.

Group II
Q2 Select 1% of the latest AtomicParts via buildDate and

return the MyIDs.
Q3 Select 10% of the latest AtomicParts via buildDate and

return the MyIDs.
Q7 Select all of the AtomicParts and return the MyIDs.

Group III
Q5 Find the MyID of a CompositePart if it is more recent

than the BaseAssembly it is using.
Q6 Find the MyID of a CompositePart (recursively) if it is

more recent than the BaseAssembly or the ComplexAs-
sembly it uses.

Q8 Join AtomicParts and Documents on the docId of Atom-
icPart and the MyID of Document.

Additional
Q11 Select all BaseAssemblies from one XML database

where it has the same MyID and type attributes as the
other BaseAssemblies but with later buildDate.

Q9 Randomly generate two phrases from all phrases in
Documents. Select the documents containing these two
phrases.

Q10 Repeat Q1 but replace duplicated elements using
IDREF.

Q12 Select all AtomicParts with corresponding Compos-
iteParts as their sub-elements.

Q13 Select all ComplexAssemblies with type “type008“.

Table 3.6: XOO7 query operations [BRE01c]

16

3 Evaluation of Current XML Benchmarks

Figure 3.2: DTD of the XOO7 benchmark [BRE02]

In order to cover “all feasible queries within the current XML query model
[BRE01c]” 14 more queries were added to XOO7 resulting in a total of 27
queries. The new version is called XOO7-Extended. Listing all of these queries
in this thesis would not significantly increase the understanding of XOO7. In-
stead the features of the added queries will shortly be explained.

The queries of the extended version are again arranged in four groups. Group
I evaluates the document-centric support of the XMLMS. Group II consists of
queries for testing text/keyword search, negation handling and sorting of re-
sults. Aggregate functions and efficient handling of structural recursion are
covered by group III. Finally group IV is concerned with User Defined Func-
tions (UDF’s) and queries that need explicit and implicit order maintenance.

3.2.3 Implementation and Experiences

XOO7 must have already been implemented, because in [BRE01d] and [BRE02]
its authors report their experiences when benchmarking different systems. The
implementation supports data sets of three sizes: 12.8 MB, 8.4 MB and 4.2
MB. To run the benchmark, native implementations had to be written for every
XMLMS since there was no common XML query language. However, no pub-

17

3 Evaluation of Current XML Benchmarks

licly available implementation of the benchmark could be found at the time of
writing.

The benchmarked systems are Kweelt, Xena, Lore and a not specified com-
mercial XPath implementation. Kweelt [SAH] is a native XMLMS that works
directly on the XML files. Xena [XEN] is a XML-enabled DBS developed at the
University of Singapore. It is actually a front-end to the relational database sys-
tem (RDBS) MySQL [MYS] that maps XML documents to tables. Lore [GOL] is
a semistructured DBS that has been adapted to handle XML data by creating
data guides. Data guides are a summary of all paths in the database starting
from the root.

An extensive discussion of the results can be found in [BRE02]. Summing them
up, it can be stated that XML-enabled DBS have the best performance when
relational queries are processed due to their internal optimization while native
XMLMS are better in processing navigational and document queries with which
XML-enabled DBS are not familiar.

3.2.4 Rating of Benchmark

The authors of the benchmark did not do the work of creating a clear scenario
for their benchmark. Instead they refer to a well-known benchmark and state
that it is problematic to support a certain use-case due to the many applications
of XML. XOO7 claims to be representative for cases where extensive queries
that exhaust XML’s potential to the fullest are done on XML documents. It
must be noted that the benchmark lacks multi-user simulation. Users must
decide for themselves, if this benchmark has relevance for their domain.

XOO7’s portability would increase a lot if a standard XML query language was
supported by all tested systems. Because there is no publicly available imple-
mentation, it cannot be verified if the implementation is OS-independent.

By providing three different sizes of data sets XOO7 achieves some kind of scal-
ability. However, these are so small compared to Xmark that there suitability
can be doubted for industry-strength scenarios.

Compared to the original OO7, this benchmark can hardly be called “simple”
anymore. 27 queries are a lot and allow for many interpretations of the results.
It is just the question whether prospective users would not rather want a crisp
and clear answer (even it is less accurate). However, the authors have argu-
ments for choosing these queries and it cannot be ruled out that 27 queries are
the closest one can get to simplicity without loosing relevance.

Because of the foregone points, calling XOO7 useful in the way that Gray de-
fines it (see chapter 3) is problematic.

18

3 Evaluation of Current XML Benchmarks

3.3 XMach-1

XMach-1, which stands for “XML Data Management Benchmark, version1”,
was developed at the University of Leipzig, Germany in 2000. It was pub-
lished in 2001 as the first XML database benchmark [RAH02]. During its
development its authors Rahm and Böhme focused on scalability, multi-user
simulation and the evaluation of the entire data management system. The
main sources of information on the benchmark were the publications [RAH01a,
RAH01b, RAH01c, RAH01d, RAH02] and the project’s homepage [XMA].

3.3.1 Concept

A reason for XML’s popularity is its usefulness as universal data exchange for-
mat. Since large amounts of XML data occur in web environments, the bench-
mark is based on a web application. Unlike other benchmarks, XMach-1 does
not only measure the performance of the DBS, but instead defines a system
consisting of four components: XML database, application servers, loaders and
browsers (see figure 3.3). It has therefore the most complex architecture of all
benchmarks in this paper which makes it also the hardest to implement.

Figure 3.3: Components of XMach-1 Architecture [RAH01b]

The core of the system is, of course, the XML database. It manages the XML
data and supplies it to clients. Because the benchmark simulates a web-application,
clients cannot directly connect to the database but must use the interface pro-
vided by the application servers. Database and application servers together are
called the System under Test (SUT). Clients connect to the SUT through the

19

3 Evaluation of Current XML Benchmarks

Internet using Hyper Text Transfer Protocol (HTTP) connections. They are dis-
tinguished between browsers and loaders. Browser clients can only query data
while loader clients can insert, update and delete data from the database.

The database contains different kinds of XML data. There is a directory docu-
ment that keeps track of all referenced XML documents in the database. Doc-
uments need not to be stored in the database. The loaders could for example
search the web for XML documents and index them in the directory document
of the database (similar to robots of a search engine). Users of the simulated
environment can use loaders to upload their XML documents to the database.
These local documents will also be referenced in the directory document. The
directory document itself is an XML file and contains information on the path
of the referenced document, its internal identification code, insertion time and
the name of the loader.

Besides the directory document storing references to XML documents, the database
also contains entire XML documents. These are generated by the benchmark
using the 10,000 most common English words and distributing them accord-
ing to Zipf ’s Law [ZIP]. The benchmark can be run with schema-based docu-
ments, i.e. documents have a document type definition (DTD), or without. In
the schema-based case the benchmark will generate different DTD’s and XML
files referring to these. The number of DTD’s scales with the database’s size be-
cause it is unrealistic to believe that a database contains only XML documents
with the same DTD. In the schema-less case, the benchmark still generates the
same XML documents but no DTD files are generated and the documents do
not refer to a DTD. Rahm and Böhme suggest four different database sizes with
10,000, 100,000, 1 million and 10 million XML documents (plus the directory
document).

3.3.2 Benchmark Operations

The workload of the XMach-1 benchmark is composed of eleven different oper-
ations: eight query operations and three data manipulation operations. Tables
3.8 and 3.10 list all of the operations and comment on these.

Of course, the benchmark defines the percentage that each operation should
have of the total workload during a benchmark run. This makes the benchmark
repeatable and allows to directly compare different SUT’s2. Table 3.11 explains
the distribution of the different operations.

2A different SUT could also mean “same DBS, different application server”, e.g. if a database
wants to find out which application server harmonizes best with its product.

20

3 Evaluation of Current XML Benchmarks

ID Description Comment
Q1 Get document with given URL. Return a complete document (complex hi-

erarchy with ordering preserved).
Q2 Get doc_id and URL from documents con-

taining a given phrase in paragraph ele-
ments.

Text retrieval query. The phrase is cho-
sen from the phrase list. Join needed to
get URL for qualifying documents.

Q3 Start with the first element which name
starts with ’chapter’ and recursively fol-
low first element which name start with
’section’. Return each of the ’section’ ele-
ments.

Simulates navigating a document tree
using sequential operators.

Q4 Return flat list of head elements which
are children of elements whose names
start with ’section’ from a document given
by doc_id.

Restructuring operation simulating cre-
ation of a table of contents.

Q5 Get document name (last path element in
directory structure) from all documents
which are below a given URL fragment.

Browse directory structure. Operation on
structured unordered data.

Q6 Get doc_id and id of parent element of au-
thor element with given content.

Find chapters of a given author. This test
efficiency of index implementation.

Q7 Get doc_id from documents which are ref-
erenced by at least four other documents.

Get important documents. Needs some
kind of group by and count operation.

Q8 Get doc_id from the last 100 updated doc-
uments having an author attribute.

Needs count, sort, join and existential op-
erations and accesses metadata.

Table 3.8: XMach-1 query operations [RAH01c]

ID Description Comment

M1 Insert document with given URL. The loader generates a document and
URL and sends them to the HTTP server.

M2 Delete a document with given doc_id. A robot requests deletion, e.g. because
the corresponding original document no
longer exists on the web.

M3 Update URL and update_time for a given
doc_id.

Update directory entry.

Table 3.10: XMach-1 data manipulation operations [RAH01c]

21

3 Evaluation of Current XML Benchmarks

Operation ID Percentage
Q1 � 30
Q2 � 20

Q3, Q4, Q5, Q6 � 10 each
Q7, Q8 � 4 each

M1 � 0.75
M2 � 0.25
M3 � 1

Table 3.11: XMach-1 operation mix composition [RAH01c]

As can be seen, operation Q1 is the main operation of the benchmark. It is
used to determine the throughput which is measured in XML queries per sec-
ond (Xqps). It is also the only one that has a maximum limit to its percentage.
The other operations are used to find out how well the throughput of the SUT
responds to stress. The system must maintain a high Xqps-rate while execut-
ing the other operations. There is a response time limit for all operations Q1 -
Q8 and M3 of 3 seconds, so that the candidate cannot keep up his throughput
by delaying other operations until infinity. Only operations M1 and M2 (insert
and delete) are regarded as not time-critical by XMach-1’s developers and have
a response time limit of 20 seconds. Only a small share of the operations manip-
ulate the XML data (� 2%). Since insert operations (M1) occur three times more
often than delete operations (M2), the size of the database will increase during
the execution of the benchmark. Rahm and Böhme recommend a benchmark
execution time of at least one hour.

3.3.3 Implementation and Experiences

There is a publicly available implementation of benchmark written in Java
[RAH01d]. It consists of document generator and an execution framework de-
pending on an application server for Java servlets. The execution framework is
made of by the clients which can be instantiated in varying numbers. A servlet
is responsible for taking requests from the clients and translating them for the
database system.

To achieve comparable results on different SUT’s the benchmark has to be run
with the same number of clients and the same database size. According to
[RAH01b], XMach-1 has been used to benchmark different XMLMS, but it could
not be determined which these were.

22

3 Evaluation of Current XML Benchmarks

3.3.4 Rating of Benchmark

According to Gray’s criteria (see chapter 3), XMach-1 is portable, scalable and
simple. It is portable because it has been implemented in Java. Scalability is
achieved by supporting different numbers of clients and database sizes. It is
comprehensive and the basic ideas can be grasped quickly.

Only the point “relevance” must be left open for discussion. There are too many
opinions on what a XMLMS should achieve to decide that this benchmark is
relevant for XML applications3. Especially the small number of queries might
not deliver analyses fine-grained enough for some users.

Still XMach-1 is a very interesting benchmark. Although not defined in any
of the current XML query language drafts like XQuery, it includes XML data
manipulation. These operations can be implemented - just not with XQuery
and similar languages. While Xmark and XOO7 ignore data manipulation, not
every XML database is read-only and hence it is more realistic to include this
matter in the benchmark. Also, XMach-1 is the only benchmark where each
operation has a prescribed share of the workload mix, whereas the other bench-
marks execute every operation the same number of times. For many users (es-
pecially of the targeted domain) XMach-1 can be a useful benchmark because
of its assessment of the whole system which will give results close to real-life.

3Of course, this does not imply that XMach-1 is not relevant.

23

4 Benchmarking DB2 with XMach-1

DB2 is a XML enabled databases, i.e. it has existed before and programmers
added some features to let it handle XML data. The nature of XML makes it
hard for relational database systems like DB2 to handle it easily. Therefore it
would be interesting to know more about its performance in this field. When
evaluating the three benchmarks, it was decided to use XMach-1 for bench-
marking DB2. For several reasons it seemed to be fit best:

� It is the only one to simulate a multi-user environment. Thus it does
not only measure the efficiency of the tested system concerning certain
operations, but also how well the system scales. Since the majority of
databases are being used in multi-user environments like LAN’s or even
the Internet, this feature is very important to prospective users.

� A complete benchmark framework was already available. For XOO7 no
software could be found. The XMark team provided software for generat-
ing the XML data and the benchmark’s queries but no software to measure
the time per operation was provided.

� XMach-1 has been implemented completely in Java making it machine
and OS independent. After adding the DB2 specific code, it should be
possible to benchmark DB2 on different systems (thus achieving good re-
usability).

Although a framework for the benchmark was already provided, still several
adjustments had to be made. First, a loader had to be written to load the XML
data of the benchmark into the DBS. Second, the queries needed to be imple-
mented. There is no generic way of implementing them, because every DBS has
its own approach of handling XML data.

4.1 The System under Test

The “system under test” (SUT) was a Pentium II PC at 400MHz running SuSE
Linux 8.0. IBM’s DB2 was available in version 7.1 for Linux and the XML

24

4 Benchmarking DB2 with XMach-1

Extender was version 7.1.2. The application server was Tomcat 4.0.3 from the
Apache Project.

4.2 Management of XML Data with DB2

IBM’s database system DB2 cannot manage XML data by itself. It requires an
add-on called XML Extender [IBM]. The XML Extender basically knows two
methods for storing XML data: XML Column and XML Collection.

XML Column is simpler and more straightforward. It stores entire XML docu-
ments in columns (see figure 4.1 for a graphical representation). The advantage
of this method is that it requires only little preparation, the XML file stays in-
tact and can be extracted easily again. The downside of this method is that
extra tables, so called side tables, are needed for indexed elements which can
also be seen in figure 4.1. Also it is not recommended for composing new XML
documents from stored data. XML Column should be used for the purpose of
archiving entire XML documents which are unlikely to change [IBM00a].

Figure 4.1: Illustration of the XML Column storage method [IBM00a]

XML Collection is a more sophisticated storage method. XML documents are
decomposed and their content is mapped to relational tables instead of storing
documents as a whole. This way all classical database optimization techniques
can be used when working with the XML data, resulting in a better performance
than with XML Column. The mapping of the document to relational tables is

25

4 Benchmarking DB2 with XMach-1

done with Document Access Definition (DAD) files. These are special XML files
that describe how each element of the XML source file should be stored. In
general, XML files have a Document Type Definition (DTD) that describe their
structure. Because different XML structures must be mapped differently, there
needs to be a DAD file for every XML document’s DTD if the document should
be stored using XML Collection. See figure 4.2 for a graphical representation of
the mapping.

Figure 4.2: Illustration of the XML Collection storage method [IBM00a]

XML Collection is suitable for cases where the user wants to create different
XML documents from the XML data he gathered. If the structure of the XML
data is not important, XML Collection should be preferred over XML Column.
Also, if the XML data will be updated a lot, XML Collection should be used for
fast update operations. No side tables are required for indexing data in XML
Collections. It is sufficient to put a regular index on the appropriate column
[IBM00a].

4.3 Problems with DB2’s XPath Implementation

The query operations of the XMach-1 benchmark have been formulated in XQuery
(see the appendix or [XQE]). This was a wise decision, for at the moment it
seems that XQuery will become the XML query language used by all future
products. The downside of choosing XQuery is that currently very few products
contain XQuery implementations. This is also true for the version 7.1.2 of the
XML Extender that was used.

Fortunately the XML Extender supports XPath [XPA] expressions. XPath al-
lows to navigate in XML documents using paths similar to the ones in filesys-
tems. The path expressions of XPath have been integrated into XQuery when

26

4 Benchmarking DB2 with XMach-1

it was specified by the World Wide Web Consortium [W3C]. So XPath is a sub-
set of XQuery. Therefore it should have been possible to reformulate XMach-1’s
queries using XPath and user defined functions (UDF’s) in DB2.

It turned out that the XML Extender does not support all of the XPath syntax.
Table 4.2 lists the supported syntax.

Syntax Description

/ Represents the XML root element.
/tag1 Represents the element tag1 under root.
/tag1/tag2/.../tagn Represents an element with the name tagn as

the child of the descending chain from root, tag1,
tag2, through tagn-1.

//tagn Represents any element with the name tagn,
where the double slashes denote zero or more
arbitrary tags.

/tag1//tagn Represents any element with the name tagn, a
child of an element with name tag1 under root,
where double slashes denote zero or more arbi-
trary tags.

/tag1/tag2/@attr1 Represents the attribute attr1 of an element
tag2, which is a child of element tag1 under root.

/tag1/tag2[@attr1=“5“] Represents an element with the name tag2
whose attribute attr1 has the value 5. tag2 is a
child of an element with name tag1 under root.

/tag1/tag2[@attr1=“5“]/.../tagn Represents an element with the name tagn,
which is a child of the descending chain from
root, tag1, tag2, through tagn-1, where the at-
tribute attr1 of tag2 has the value 5.

Table 4.2: XPath syntax supported by DB2 [IBM00a]

Before beginning with the implementation of XMach-1, a series of test queries
was executed. To do so, a table called files_tab with the following properties
was created:

create table files_tab
(filename varchar(255) not null,
DTD varchar(255),
content db2xml.XMLClob compact not logged,
primary key (filename))

27

4 Benchmarking DB2 with XMach-1

Column filename held the name of the XML file, column DTD held the name of
the DTD file for the XML file and column content held the entire XML file as
character large object (CLOB). This relates to the storage technique called XML
Column by IBM [IBM00a]. It was chosen to quickly get a working database.
Into this table 1000 well-formed XML files were inserted. These had been cre-
ated with the XMach-1 Java framework [RAH01d].

A first try was to extract the entire XML file with the file name
0001_doc_1_test.xml using the following SQL statement:

select content
from files_tab
where filename=’0001_doc_1_test.xml’

The query was successful and DB2 returned the XML files content.

Queries 2, 5, 6, 7 and 8 of the XMach-1 benchmark work with XML files without
actually knowing their name. They specify the file using a criterion like a given
phrase in a paragraph element. Next should be tested, whether statements like
these were possible. The aim was to retrieve a file with a given doc_id attribute:

select filename
from files_tab
where db2xml.extractVarchar(content,
"/*/@doc_id")=’d1’

DB2 returned the following error message:

SQL0206N "/*/@doc_id" is not valid in the context
where it is used. SQLSTATE=42703,

where the SQLSTATE message 42703 means: “An undefined column, attribute,
or parameter name was detected [IBM00c].” The XPath expression “/*/@doc_id”
represents the value of the attribute doc_id of any element which is a child of
the document root. Apparently the XML Extender does not understand the
wildcard expression * as it also does not show up in table 4.2.

Even when the name of the element and the filename were specified, the XML
Extender did not return the expected result. The statement

select db2xml.extractVarchar(content,
"/document1/@doc_id")
from files_tab
where filename=’0001_doc_1_test.xml’

resulted in SQLSTATE 42703 again:

28

4 Benchmarking DB2 with XMach-1

SQL0206N "/document1/@doc_id" is not valid in the
context where it is used. SQLSTATE=42703

The next statement tried to query a more complex path. It has been taken
from query 1 of the XMach-1 benchmark [RAH01a] and is according to table 4.2
supported by the XML Extender.

select db2xml.extractVarchar(content, "/directory/
host[@name=’ahost1’]/host[@name=’bhost2’]/
host[@name=’chost3’]/path[@name=’apath3’]/
path[@name=’bpath1’]/path[@name=’cpath3’]/
path[@name=’d43.xml’]/doc_info/@doc_id")
from files_tab
where filename=’directory.xml’

The path represents the value of the attribute doc_id of the document d43.xml
which has the URL /ahost1.bhost2.chost3/apath3/bpath1/cpath3/d43.xml
in the document directory.xml. Figure 4.3 will prove this path correct.
Hence the value one would expect as a result would be ’d43’. DB2 does not

Figure 4.3: Screenshot of directory.xml

29

4 Benchmarking DB2 with XMach-1

give the expected answer. Instead it returns the following error message, say-
ing that it only accepts paths with at most 128 characters.

SQL0107N The name "/directory/host[@name=’ahost1’]/
host[@name=’bhost2’]/host[@name=’c" is too long. The
maximum length is "128". SQLSTATE=42622

Paths this short will not allow navigation in complex XML documents. Of
course, one could argue that it is possible to split up huge XML files to different
tables using the storage technique called XML Collection by IBM [IBM00a]. In
the case of XMach-1 this is not an option, because the amount of DTD files grows
with the size of the database generated by the XMach-1 framework [RAH01c].
Every DTD file requires a matching DAD file for mapping XML data to side ta-
bles. For example, the document generator already created 41 DTD files for the
smallest possible benchmark database with only 1000 XML documents. Since
there is currently no automatic way of generating DAD files, it is not possible
within defensible time to use XML Collection to store the XML documents.

Because the path of the previous statement was too long, it was tried next to
at least receive the value of the attribute name of the child elements of the
element host whose name is ’bhost2’. (Basically, that means shortening the
path to a length that is acceptable for DB2.)

select db2xml.extractVarchar(content, "/directory/
host[@name=’ahost1’]/host[@name=’bhost2’]/host/@name")
from files_tab
where filename=’directory.xml’

DB2 returned:

SQL0206N
"/directory/host[@name=’ahost1’]/host[@name=’bhost2’]/
host/@name" is not valid in the context where it is
used. SQLSTATE=42703

The actual reason why DB2 failed here, is that it expects to find atomic values
when extracting XML data with XPath statements. As can be seen in figure 4.3,
the path would have yielded several different host elements with different name
attributes. DB2 expects only one value per column for every tuple. Everything
else would violate the First Normal Form (1NF), compare [HEU].

Besides some weaknesses in the current XPath implementation, it is this re-
striction that hinder XMach-1’s reference implementation [RAH01d] from bench-
marking DB2. The Syntax of XQuery allows the usage of XPath expressions
that yield a set of values [XQE]. XMach-1 uses this feature in queries 2, 4, 5, 6,

30

4 Benchmarking DB2 with XMach-1

7 and 8. Since this much needed feature was not available, it was unrealistic to
believe that the XMach-1 benchmark could be implemented with version 7.1.2
of the XML Extender. The new version 8.1 of the XML Extender now supports
XQuery (see [IBM] for details), but at the time of writing this thesis, it was not
available yet. Therefore the idea of using XMach-1 to benchmark DB2 had to
abandoned1.

4.4 Available XQuery Implementations

Since XMach-1 relies on XQuery to run, the next idea was to find a XQuery
implementation and use it instead of DB2 for the benchmark. It was agreed to
choose open-source software to make it easy on the budget.

Qexo [BOT02a] was chosen, which is an XQuery implementation for Kawa2

[BOT02b]. It has been released under the GNU license (see [GNU] for de-
tails) and is “the only open-source XQuery implementation currently available”
[BOT02a]. Qexo is written in Java, it accepts XQuery code on the command-
line as short statements or in files as complete XQuery programs. It compiles
XQuery code to Java bytecode and executes it.

This concept is very interesting, because Qexo can be easily integrated into
other software, e.g. as a servlet. Also, it works directly on XML files thus
making the user independent from expensive XML enabled DBS or XMLMS.
It would have been nice to test Qexo with XMach-1 to find out how well it per-
forms. Unfortunately it is still work in progress and not all of the features
needed by XMach-1 are already supported. For example, at the moment it can-
not navigate through directories of XML files as needed by query 5 and it does
not support the SORTBY functionality needed by query 8.

1Since the XML Extender did not provide the anticipated ability, the IBM DB2 Text Extender
for text search and analysis also could not be used for the benchmark.

2Kawa is a Java-based system for executing Scheme code. However, Kawa and the programming
language Scheme are not important in the context of this thesis.

31

5 Conclusion and Outlook

In this thesis the necessity for special XML benchmarks has been laid out.
The differences between native and XML-enabled DBS was explained. Three
current XML benchmarks have been introduced and examined. According to
Gray’s criteria for benchmarks their usefulness has been rated.

The original objective to benchmark IBM’s DB2 with one of the benchmarks
could not be accomplished. Due to the problems analyzed in section 4.3, DB2
with version 7.1.2 of the XML Extender could not be benchmarked against the
XQuery implementation of XMach-1. Version 8.1 of the XML Extender with
support for XQuery will hopefully allow to use XMach-1 for benchmarking DB2
in the future.

To conclude, this thesis will give suggestions on the deployment of the three
discussed benchmarks when benchmarking XMLMS’s.

Different interest groups have different expectations from XML benchmarks
and also benchmarks are not equally suitable for every user. For example,
Xmark differs from XOO7 in that it is quite easy to understand and that the
necessary implementation is for the greatest part already available. XOO7 in
turn consists of more queries and so far there have been no attempts to publish
its implementation. Still both address the same user groups. For once, these
are database vendors and researchers who want to examine certain aspects of
their system. These benchmarks are very advisable for system analysis, to find
bottlenecks in the current implementation and to validate improvements of the
system. But also end-users might have an interest in using these. If they have
very specific requirements, these benchmarks could help to find out if a certain
XMLMS fulfills these.

XMach-1 is not as detailed as the other benchmarks as it has less operations
in its workload. So, maybe it does not include the specific features some users
need. Because it is the only benchmark to regard multi-user capabilities and
the cooperation of all components in the system under test (DBS and application
server), XMach-1 is more suitable for people who want to deploy a XMLMS
in a multi-user environment similar to the one modeled. Users that rely on
the performance of a XMLMS to actually work with it, will probably find this

32

5 Conclusion and Outlook

benchmark more appealing as it is closer to the real world. It does not find
out what the system could do in every aspect that could be imagined for XML
usage, but it does give an idea of how the benchmarked system might behave
under stress in a production environment.

In the future, new versions of the examined benchmarks could eliminate some
of todays shortcomings. For example, Xmark’s queries are still under develop-
ment [SCH01b] and the XOO7 team has announced to work on multi-user sup-
port and increase the portability of the system [BRE01c]. Data manipulation
is also a big issue that might be included as XQuery’s development furthers.
None of the benchmark project’s is being considered finished and they are still
up for discussion in the research community, so one should watch out for future
developments.

33

Bibliography

[BRE02] Bressan, S. et al.: "Current Approaches to XML Management",
IEEE Internet Computing, Los Alamos, IEEE Computer Society,
July 2002

[BRE01a] Bressan, S. et al.: "The XOO7 XML Management System Bench-
mark", National University of Singapore Computer Science Depart-
ment technical report TR21/00, November 2001

[BRE01b] Bressan, S. et al.: "XOO7: Applying OO7 Benchmark to XML Query
Processing Tools", Proceedings of 10th International Conference on
Information and Knowledge Management (CIKM-2001), New York,
ACM Press, 2001

[BRE01c] Bressan, S. et al.: "XML Benchmarks Put to the Test", Proceedings
of Third International Conference on Information Integration and
Web-based Applications & Services (IIWAS), Linz, Austria, Septem-
ber 2001

[BRE01d] Bressan, S. et al.: "Benchmarking XML Management Systems: The
XOO7 Way", Arizona State University, Dept. of Computer Science
Technical Report TR-01-005, July 2001

[BRExxa] Bressan, S. et al.: "The XOO7 Benchmark" on the Internet
<http://www.comp.nus.edu.sg/~ebh/XOO7.html> as of: date could
not be determined

[BRExxb] Bressan, S. et al.: "Efficient XML Data Management: An
Analysis", on the Internet <http://www.comp.nus.edu.sg/~ebh/
XOO7/download/ECWEB02.pdf> as of: date could not be determined

[BOT02a] Bothner, P.: “Qexo: The GNU Kawa implementation of XQuery”, on
the Internet <www.gnu.org/software/ qexo> as of: 28-Jul-2002

[BOT02b] Bothner, P.: “Kawa, the Java-based Scheme system”, on the Internet
<http://www.gnu.org/software/kawa> as of: 12-Jun-2002

34

Bibliography

[CAR] Carey, M.J.; DeWitt, D.J.; Naughton, J.F.: "The OO7 Benchmark",
Proceedings SIGMOD, New York, ACM Press, 1993

[COD] Codd, E.F.: "A Relational Model of Data for Large Shared Data
Banks", Communications of the ACM, vol. 13, no. 6, 1970

[GNU] “Homepage of the GNU Project”, on the Internet <www.gnu.org>

[GOL] Goldman, R.; McHugh, J.; Widom, J.: “From Semistructured Data
to XML: Migrating the Lore Data Model and Query Language”, Pro-
ceedings Workshop on Web and Databases (WebDB99), New York,
ACM Press, 1999

[GRA] Gray, J.: “The Benchmark Handbook”, 2nd edition, San Mateo, Mor-
gan Kaufmann, 1993

[HEU] Heuer, A.; Saake, G.: "Datenbanke: Konzepte und Sprachen", 2nd
edition, Bonn, mitp, 2000

[IBM] "IBM DB2 XML Extender Homepage", on the Internet <http://www-
3.ibm.com/software/data/db2/extenders/xmlext/>

[IBM00a] "IBM DB2: XML Extender Administration and Programming", ver-
sion 7, IBM, 2000

[IBM00b] "IBM DB2: Administration Guide", version 7, vol. 2, IBM, 2000

[IBM00c] “IBM DB2 Message Reference”, vol. 2, IBM, 2000

[MON] Kersten, M.; Boncz, P.: "Monet Database", on the Internet
<http://monetdb.cwi.nl> as of: 28-Apr-1998

[MYS] "MySQL Homepage", on the Internet <http://www.mysql.com>

[RAH02] Rahm, E., Böhme, T.: "XMach-1: A Multi-User Benchmark for XML
Data Management", Proceedings VLDB workshop Efficiency and Ef-
fectiveness of XML Tools and Techniques (EEXTT2002), Hongkong,
2002

[RAH01a] Rahm, E., Böhme, T.: "XMach-1 Appendix: Queries" on the Internet
<http://dbs.uni-leipzig.de/de/projekte/XML/XMach-1_queries.html>
as of: 23-Oct-2001

[RAH01b] Rahm, E.; Böhme, T.: "Benchmarking XML Database Systems -
First Experiences", Position Paper, Ninth International Workshop
on High Performance Transaction Systems (HPTS), Pacific Grove,
California, 2001

35

Bibliography

[RAH01c] Rahm, E.; Böhme, T.: "XMach-1: A Benchmark for XML Data Man-
agement", Proceedings of German Database Conference BTW2001,
Berlin, Springer, 2001

[RAH01d] Rahm, E.; Böhme, T.: "Xmach-1 Reference Implementa-
tion" on the Internet <http://dbs.uni-leipzig.de/de/projekte/XML/
xmach_1_20010518.jar> as of: 18-May-2001

[SAH] Sahuguet, A.: “Kweelt: More Than Just ’Yet Another Framework to
Query XML’!”, Proceedings SIGMOD, New York, ACM Press, May
2001

[SCH02a] Schmidt, A.R. et al.: "XMark: A Benchmark for XML Data Man-
agement" on the Internet <http://www.cwi.nl/htbin/ins1/publications
?request=pdf&key=ScWaKeCaMaBu:VLDB:02> as of: August 2002

[SCH02b] Schmidt, A.R. et al.: "XMark – An XML Benchmark Project" on the
Internet <http://monetdb.cwi.nl/xml/> as of: 19-Jul-2002

[SCH02c] Schmidt, A.R. et al.: "The Data Generation Tool – xmlgen" on the
Internet <http://monetdb.cwi.nl/xml/downloads.html> as of: 19-Jul-
2002

[SCH01a] Schmidt, A.R. et al.: "Why and How to Benchmark XML Databases"
on the Internet <http://www.cwi.nl/htbin/ins1/publications?request=
pdf&key=ScWaKeFlCaMaBu:SIGMODREC:01> as of: September
2001

[SCH01b] Schmidt, A.R. et al.: "The XML Benchmark Project" on the
Internet <http://www.cwi.nl/htbin/ins1/publications?request=pdf
&key=ScWaKeFlMaCaBu:TR-CWI:01> as of: April 2001

[W3C] “W3C Homepage”, World Wide Web Consortium, on the Internet
<http://www.w3c.org>

[XEN] "Xena – XML sEcurity eNforcement Architecture", on the Internet
<http://xena1.ddns.comp.nus.edu.sg:8080/Xena> as of: date could
not be determined

[XMA] "XMach-1 homepage", on the Internet <http://dbs.uni-
leipzig.de/de/projekte/XML/XmlBenchmarking.html> as of: 02-
Sep-2002

[XPA] Clark J.; DeRose S.: "XML Path Language (Xpath) version 1.0", on
the Internet <http://www.w3c.org/TR/xpath> as of: 16-Nov-1999

36

Bibliography

[XQE] Boag S. et al.: "Xquery 1.0: An XML Query Language", on the Inter-
net <http://www.w3.org/TR/xquery> as of: 16-Aug-2002

[ZIP] Zipf, G.K.: “The Psychobiology of Language”, Boston, Houghton Mif-
flin, 1935

37

Appendix

XMach-1 Queries formulated in XQuery

The following queries have been taken from [RAH01a].

Q1

Description: Get document with given URL.
Parameter: URL = /ahost1.bhost2.chost3/001_loader1.xml

LET $a :=
/directory/host[@name="ahost1"]/host[@name="bhost2"]
/host[@name="chost3"]/path[@name="001_loader1.xml"]
/doc_info/@doc_id,
$b := /*[@doc_id = $a]
RETURN $b

Q2

Description: Get doc_id from documents containing a given phrase in para-
graph elements.
Parameter: phrase = "test pattern"

FOR $a IN /*[@doc_id]
WHERE SOME $p IN $a//paragraph SATISFIES contains($p, "test
pattern")
RETURN distinct($a/@doc_id)

The query was slightly changed compared to the specification document in order to focus on more specific
tasks.

38

Q3

Description: Start with first chapter element and recursively follow first section
element. Return last section element.
Parameter: doc_id = "d1" suffix = "10"

DEFINE FUNCTION deepestFirstSection(ELEMENT $e) RETURNS
ELEMENT
{ IF (empty($e/section10)) THEN $e
ELSE deepestFirstSection($e/section10[1])

}
deepestFirstSection(/document10[@doc_id="d1"]/chapter10[1]
/section10[1])
The query was slightly changed compared to the specification document in order to focus on more specific
tasks.

Q4

Description: Return flat list of head elements which are children of section
elements.
Parameter: doc_id = "d1" suffix = "10"

FOR $a IN /document10[@doc_id="d1"]//section10/head10
RETURN $a
The query was slightly changed compared to the specification document in order to focus on more specific
tasks.

Q5

Description: Get document name (last path element in directory structure) from
all documents which are below a given URL fragment.
Parameter: URL = "/ahost1.bhost2.chost3/"

FOR $a IN
/directory/host[@name="ahost1"]/host[@name="bhost2"]
/host[@name="chost3"]//path[doc_info]
RETURN $a/@name

Q6

Description: Get doc_id and id of parent element of author element with given
content.
Parameter: Author = "Karl May"

39

FOR $a IN /*[@doc_id]
WHERE $a//*/author="Karl May"
RETURN <document> <doc_id>{ string($a/@doc_id) }</doc_id>
{ FOR $e IN $a//*[author="Karl May"]
RETURN <parent_id>{string($e/@id)}</parent_id>

} </document>

Q7

Description: Get doc_id from documents which are referenced by at least four
other documents.

NAMESPACE xlink=’http://www.w3.org/1999/xlink’
FOR $refID IN distinct(/*//link/@xlink:href)
LET $refDocs :=
distinct(/*[.//link/@xlink:href=$refID]/@doc_id)
WHERE count($refDocs) >= 4
RETURN <docid>{string($refID)}</docid>

Q8

Description: Get doc_id from the last 100 updated documents having an author
attribute.

LET $b := (FOR $a IN /directory//doc_info[@update_time]
SORTBY (./@update_time DESCENDING)
WHERE not(empty(/*[@doc_id=$a/@doc_id]/@author))
RETURN <docid>{string($a/@doc_id)}</docid>)

RETURN $b[1 TO 100]

40

Eidesstattliche Versicherung

Ich versichere eidesstattlich durch eigenhändige Unterschrift, daß ich die Ar-
beit selbständig und ohne Benutzung anderer als der angegebenen Hilfsmittel
angefertigt habe. Alle Stellen, die wörtlich oder sinngemäß aus Veröffentlichun-
gen entnommen sind, habe ich als solche kenntlich gemacht. Ich weiß, daß bei
Abgabe einer falschen Versicherung die Prüfung als nicht bestanden zu gelten
hat.

Bremen, den 04.10.2002

Tim F. Rieger

